The development of efficient supercapacitors hinges on the innovation of superior electrodes, which are pivotal in augmenting their energy storage capabilities. Supercapacitors, recognized for their high-power density and extended cycle life, play a crucial role as sustainable solutions in addressing energy storage challenges. A fundamental aspect of supercapacitor functionality involves the electrode material, which works in concert with other key components such as the current collector, separator, and electrolyte. This study focuses on evaluating the impact of the current collector material on the performance of symmetric supercapacitors. We investigated the electropolymerization of polyaniline on woven steel mesh current collectors of varying mesh sizes, ranging from 20 to 200 mesh per inch, using assorted deposition conditions. The electrochemically modified woven steel meshes were utilized to construct symmetric supercapacitors. The electrochemical performance of the assembled supercapacitors, configured in a two-electrode system, was investigated using a variety of electrochemical techniques to better understand the kinetics of electrolyte ion migration. Notably, the 20-mesh size, characterized by the fewest pores per inch, demonstrated superior performance with an optimum capacitance of 4730 mF/cm, an energy density of 317.8 μWh/cm, and a power density of 400 μW/cm at a current density of 1 mA/cm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400341 | DOI Listing |
Materials (Basel)
December 2024
Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
Due to increasing mobility and energy conservation needs, improving bus and coach safety without adding weight is essential. Many crashes with fatal outcomes for vehicle occupants are associated with the rollover of the vehicle, revealing the structural weakness of the steel pillars between windows, which must resist high levels of bending during rollovers. This study aims to reinforce these pillars with expired carbon fiber prepreg from the aircraft industry, improving safety and reducing environmental waste.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, there is increasing interest in hybrid structures obtained through adhesive bonding of high-performance fiber-reinforced polymers (FRPs) to high-strength steel sheets.
View Article and Find Full Text PDFChem Asian J
September 2024
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
The development of efficient supercapacitors hinges on the innovation of superior electrodes, which are pivotal in augmenting their energy storage capabilities. Supercapacitors, recognized for their high-power density and extended cycle life, play a crucial role as sustainable solutions in addressing energy storage challenges. A fundamental aspect of supercapacitor functionality involves the electrode material, which works in concert with other key components such as the current collector, separator, and electrolyte.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2023
Department of Chemistry, Sejong University, Seoul, Republic of Korea.
Rationale: Ion mobility spectrometry (IMS) has been widely used for on-site detection of explosives. Air sampling method is applicable only when the concentration of explosive vapor is considerably high in the air, but vapor pressures of common explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) are very low. A test method for analyzing the vapor detection efficiency of explosives with low vapor pressure via IMS was developed using artificial vapor and collection matrices.
View Article and Find Full Text PDFSensors (Basel)
August 2023
Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany.
A person's body temperature is an important indicator of their health status. A deviation of that temperature by just 2 °C already has or can lead to serious consequences, such as fever or hypothermia. Hence, the development of a temperature-sensing and heatable yarn is an important step toward enabling and improving the monitoring and regulation of a person's body temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!