Background And Objective: As the presentation of pulmonary nodules increases, the importance of a safe and accurate method of sampling peripheral pulmonary nodules is highlighted. First-generation robotic bronchoscopy has successfully assisted navigation and improved peripheral reach during bronchoscopy. Integrating tool-in-lesion tomosynthesis (TiLT) may further improve yield.
Methods: We performed a first-in-human clinical trial of a new robotic electromagnetic navigation bronchoscopy system with integrated digital tomosynthesis technology (Galaxy System, Noah Medical). Patients with moderate-risk peripheral pulmonary nodules were enrolled in the study. Robotic bronchoscopy was performed using electromagnetic navigation with TiLT-assisted lesion guidance. Non-specific results were followed up until either a clear diagnosis was achieved or repeat radiology at 6 months demonstrated stability.
Results: Eighteen patients (19 nodules) were enrolled. The average lesion size was 20 mm, and the average distance from the pleura was 11.6 mm. The target was successfully reached in 100% of nodules, and the biopsy tool was visualized inside the target lesion in all cases. A confirmed specific diagnosis was achieved in 17 nodules, 13 of which were malignant. In one patient, radiological monitoring confirmed a true non-malignant result. This translates to a yield of 89.5% (strict) to 94.7% (intermediate). Complications included one pneumothorax requiring observation only and another requiring an overnight chest drain. There was one case of severe pneumonia following the procedure.
Conclusion: In this first-in-human study, second-generation robotic bronchoscopy using electromagnetic navigation combined with integrated digital tomosynthesis was feasible with an acceptable safety profile and demonstrated a high diagnostic yield for small peripheral lung nodules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/resp.14778 | DOI Listing |
Front Digit Health
January 2025
Department of Information Engineering, University of Pisa, Pisa, Italy.
Wearable augmented reality in neurosurgery offers significant advantages by enabling the visualization of navigation information directly on the patient, seamlessly integrating virtual data with the real surgical field. This ergonomic approach can facilitate a more intuitive understanding of spatial relationships and guidance cues, potentially reducing cognitive load and enhancing the accuracy of surgical gestures by aligning critical information with the actual anatomy in real-time. This study evaluates the benefits of a novel AR platform, VOSTARS, by comparing its targeting accuracy to that of the gold-standard electromagnetic (EM) navigation system, Medtronic StealthStation S7.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.
Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.
View Article and Find Full Text PDFInt J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Satellite Navigation System and Equipment Technology, The 54th Research Institute, China Electronics Technology Group Corporation (CETC), Shijiazhuang 050081, China.
Intelligent unmanned clusters have played a crucial role in military reconnaissance, disaster rescue, border patrol, and other domains. Nevertheless, due to factors such as multipath propagation, electromagnetic interference, and frequency band congestion in high dynamic scenarios, unmanned cluster networks experience frequent topology changes and severe spectrum limitations, which hinder the provision of connected, elastic and autonomous network support for data interaction among unmanned aerial vehicle (UAV) nodes. To address the conflict between the demand for reliable data transmission and the limited network resources, this paper proposes an AODV routing protocol based on node energy consumption and mobility optimization (AODV-EM) from the perspective of network routing protocols.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!