Promoter characterization of relZ-bifunctional (pp)pGpp synthetase in mycobacteria.

Genes Cells

Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India.

Published: September 2024

The second messenger guanosine 3',5'-bis(diphosphate)/guanosine tetraphosphate (ppGpp) and guanosine 3'-diphosphate 5'-triphosphate/guanosine pentaphosphate (pppGpp) ((p)ppGpp) has been shown to be crucial for the survival of mycobacteria under hostile conditions. Unexpectedly, deletion of primary (p)ppGpp synthetase-Rel did not completely diminish (p)ppGpp levels leading to the discovery of novel bifunctional enzyme-RelZ, which displayed guanosine 5'-monophosphate,3'-diphosphate (pGpp), ppGpp, and pppGpp ((pp)pGpp) synthesis and RNAseHII activity. What conditions does it express itself under, and does it work in concert with Rel? The regulation of its transcription and whether the Rel enzyme plays a role in such regulation remain unclear. In this article, we have studied relZ promoter and compared its activity with rel promoter in different growth conditions. We observed that the promoter activity of relZ was constitutive; it is weaker than rel promoter, lies within 200 bp upstream of translation-start site, and it increased under carbon starvation. Furthermore, the promoter activity of relZ was compromised in the rel-knockout strain in the stationary phase. Our study unveils the dynamic regulation of relZ promoter activity by SigA and SigB sigma factors in different growth phases in mycobacteria. Importantly, elucidating the regulatory network of RelZ would enable the development of the targeted interventions for treating mycobacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.13135DOI Listing

Publication Analysis

Top Keywords

promoter activity
12
pppgpp pppgpp
8
relz promoter
8
rel promoter
8
activity relz
8
promoter
7
pppgpp
7
activity
5
relz
5
promoter characterization
4

Similar Publications

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.

View Article and Find Full Text PDF

The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing .

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.

Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!