Dysregulation of miR-146a in human milk of mothers having children with autism.

Int J Dev Neurosci

Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.

Published: October 2024

Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively. Breastfeeding provides newborns with many bioactive compounds that support their neurodevelopment including miRNA. Our pilot study evaluated the expression pattern of miR-106a and miR-146a in human milk (HM) of nursing mothers (n = 36) having autistic children compared to age-matched counterparts (n = 36) with neurotypical children as controls. Under sterile conditions, breast milk samples were collected using manual sucking pumps and centrifuged to separate the fat layer. Total RNA was extracted from the lipid fraction, and the expression profiles of both miR-106a and miR-146a were evaluated using quantitative real-time polymerase chain reaction. Among the test group, we reported some factors that were previously linked to HM miRNA perturbations: gestational diabetes, hypertension, and cesarean delivery. HM miR-106a showed comparable expression levels in both mother groups (p = 0.8681), whereas HM miR-146a was significantly downregulated in mothers with autistic children compared to controls (p = 0.0399). Alternatively, HM miR-106 levels were positively associated with two ASD clinical parameters: Childhood Autism Rating Scale (CARS) and communication and language domain of Autism Diagnostic Interview-Revised (ADI-R) (r = 0.6452, p = 0.0003 and r = 0.3958, p = 0.0410, respectively). The receiver operating characteristic (ROC) curves of both maternal HM miR-106a and miR-146a showed poor fitness as predictive biomarkers for ASD. Our findings suggest that the miR-146a differential expression in ASD children may originate at infancy during the lactation period. Thus, maternal pre- and postnatal health care is critical to maintain optimal miRNome in breast milk.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jdn.10353DOI Listing

Publication Analysis

Top Keywords

mir-106a mir-146a
12
mir-146a human
8
human milk
8
autistic children
8
children compared
8
breast milk
8
mir-146a
6
children
5
asd
5
dysregulation mir-146a
4

Similar Publications

Integrative analysis of gene and microRNA expression profiles reveals candidate biomarkers and regulatory networks in psoriasis.

Medicine (Baltimore)

July 2024

Department of Pathogenic Biology, Wuhan University of Science and Technology, Medical College, Wuhan, Hubei, PR China.

Psoriasis (PS) is a chronic inflammatory skin disease with a long course and tendency to recur, the pathogenesis of which is not fully understood. This article aims to identify the key differentially expressed genes (DEGs) and microRNA (miRNAs) of PS, construct the core miRNA-mRNA regulatory network, and investigate the underlying molecular mechanism through integrated bioinformatics approaches. Two gene expression profile datasets and 2 miRNA expression profile datasets were downloaded from the gene expression omnibus (GEO) database and analyzed by GEO2R.

View Article and Find Full Text PDF

Dysregulation of miR-146a in human milk of mothers having children with autism.

Int J Dev Neurosci

October 2024

Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.

Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs).

View Article and Find Full Text PDF

Objective: This study analyzed the relationship between bone marrow microvessel density (MVD) and the expression of four miRNAs with chronic myelogenous leukemia (CML) resistance after tyrosine kinase inhibitor (TKI) treatment.

Methods: 234 CML patients were divided into resistance and non-resistance groups in terms of the results of the 5-year follow-up. Patients were divided into the Optimum response group and the Warning/Failure group based on TKI response.

View Article and Find Full Text PDF
Article Synopsis
  • * Myeloma cells release specific microRNAs (miR-106a-5p and miR-146a-5p) via exosomes, which enhance the induction of suppressive immune cells called M-MDSCs from healthy blood cells.
  • * These microRNAs work alongside other factors like CCL5 and MIF to upregulate molecules that contribute to immune suppression, suggesting new therapeutic approaches to improve immunotherapy effectiveness in MM.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!