Crystalline metal-organic frameworks (MOFs) have garnered extensive attention owing to their highly ordered porous structure and physicochemical properties. However, their practical application often requires their integration with various substrates, which is challenging because of their weakly adhesive nature and the diversity of substrates that exhibit different properties. Herein, we report the use of amorphous metal-phenolic network coatings to facilitate the growth of crystalline MOF coatings on various particle and planar substrates. Crystalline MOFs with different metal ions and morphologies were successfully deposited on substrates (13 types) of varying sizes, shapes, and surface chemistries. Furthermore, the physicochemical properties of the coated crystalline MOFs (e.g., composition, thickness) could be tuned using different synthesis conditions. The engineered MOF-coated membranes demonstrated excellent liquid and gas separation performance, exhibiting a high H permeance of 63200 GPU and a H/CH selectivity of 10.19, likely attributable to the thin nature of the coating (~180 nm). Considering the vast array of MOFs available (>90,000) and the diversity of substrates, this work is expected to pave the way for creating a wide range of MOF composites and coatings with potential applications in diverse fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202410043DOI Listing

Publication Analysis

Top Keywords

crystalline metal-organic
8
metal-phenolic network
8
physicochemical properties
8
diversity substrates
8
crystalline mofs
8
crystalline
5
substrates
5
metal-organic framework
4
coatings
4
framework coatings
4

Similar Publications

A multi-scale model is crucial for combining experiments and simulations to reveal the energy storage mechanism. As novel electrode materials, conductive metal-organic frameworks (c-MOFs) provide an ideal platform for understanding the energy storage process in supercapacitors. However, the prevailing circuit models lack consideration of the distinctive transmission path of c-MOFs, which hinders accurate descriptions of c-MOF supercapacitors.

View Article and Find Full Text PDF

Free-standing bimetallic Co/Ni-MOF foams toward enhanced methane dry reforming under non-thermal plasma catalysis.

J Colloid Interface Sci

December 2024

Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:

Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.

View Article and Find Full Text PDF

The anodic oxygen evolution reaction (OER) process is essential in new technologies such as water electrolysis and metal-air batteries. However, it often exhibits suboptimal efficiency and delayed kinetics. This study presents a novel and new design for the fabrication of homogeneous FeNiBTC/SSM (SSM = stainless steel material) with tunable crystalline properties by a self-sacrificial and in situ synthesis from a recycled stainless steel substrate.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) with adjustable structures, diverse chemical functionalities, and excellent CO capture ability have shown important potential application in the photocatalytic reduction of CO to valuable fuel to curb the energy crisis. In this work, a series of new isostructural lanthanide-organic frameworks based on hexanuclear {LnO} clusters, {(DMA) [Ln(μ-OH)(HO)(SBTC)]} (Ln-MOFs, Ln = Eu, Dy, Gd, Tb, Yb; HSBTC = 5,5'-(ethene-1,2-diyl) di-isophthalic acid; DMA = dimethylamine cation) were synthesized by the solvothermal method. Ln-MOFs were metal-organic frameworks formed by {Ln(μ-OH)} clusters and poly(carboxylic acid) ligands HSBTC, which exhibited excellent photocatalytic properties for the reduction of CO to CO.

View Article and Find Full Text PDF

MOF biochar composites for environmental protection and pollution control.

Bioresour Technol

December 2024

School of Engineering, The University of Manchester, Manchester M13 9PL, UK. Electronic address:

Research studies on Metal Organic Frameworks (MOF) based composites and their potential applications in environmental engineering and pollution control have recently emerged. An attractive material to form MOF composites is biochar (BC); a low-cost, highly porous carbonaceous by-product of biomass pyrolysis. This paper presents a critical review on MOF-biochar composites, focusing on fabrication, characterisation, modification, and applications in environmental protection and pollution control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!