The moth fly, Clogmia albipunctata, is a common synanthropic insect with a worldwide range that lives in nearly any area with moist, decaying organic matter. These habitats comprise both smooth, slippery substrates (e.g., bathroom drains) and heterogeneous, bumpy ground (e.g., soil in plant pots). By using terrain of varying levels of roughness, we focus specifically on how substrate roughness at the approximate size scale of the organism affects kinematics and coordination in adult moth flies. Finally, we compare and contrast our characterizations of locomotion in C. albipunctata with previous work of insect walking in naturalistic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nyas.15176 | DOI Listing |
Insect Sci
January 2025
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan.
The yips is a coordination impairment partly attributed to task-specific dystonia in athletes. While previous research focused on comparisons between control and yips groups, this study aimed to highlight interindividual differences in the yips symptoms of two baseball players with distinct dystonic movements through electromyographic and kinematic analysis. Twelve male college baseball players with two exhibiting throwing yips symptoms participated in this study.
View Article and Find Full Text PDFBiol Sport
January 2025
Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.
Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sport Biomechanics, Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran.
Most sports and leisure activities involve repetitive movements in the upper limb, which are typically linked to pain and discomfort in the neck and shoulder area. Movement variability is generally expressed by changes in movement parameters from one movement to another and is a time-dependent feature of repetitive activities. The purpose of this study was to examine the effect of repeated movement-induced fatigue on biomechanical coordination and variability in athletes with and without chronic shoulder pain (CSP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!