Purpose: To reduce the rectal radiation dose during local radiation therapy of prostate cancer, a hydrogel spacer is typically implanted between the prostate and rectum. However, the spacer volume can change during external beam radiation therapy (EBRT). Therefore, we used magnetic resonance imaging (MRI) to determine changes in the spacer volume during EBRT and analyzed the data to identify patient factors influencing this change.

Materials And Methods: A hydrogel spacer was implanted in each enrolled patient diagnosed with prostate cancer (n = 22, age = 69-86 years) for EBRT with a total dose of 70 Gy over 35 fractions. T2-weighted MRI images were acquired before (median = 8 days) and during EBRT, when the radiation dose of 48 Gy (median) was given at 55 days (median) after implantation. MRI images were used to determine the spacer volume as well as the maximum and minimum distances between the prostate and anterior wall of the rectum at the middle height of the prostate. Scatterplots were created to determine whether correlations existed between changes in the spacer volume and these two distances, while uni- and multivariate analyses were conducted to determine if the spacer volume change was influenced by the following patient factors: age, body mass index, estimated glomerular filtration rate, and visceral fat areas at the umbilical and femoral head positions.

Results: The spacer volume increased in all 22 patients, with the smaller spacer volume before EBRT increasing by a larger amount during EBRT. This increase in the spacer volume was unaffected by other patient factors. However, it correlated with the change in the maximum distance between the prostate and anterior wall of the rectum.

Conclusion: To avoid adverse changes in the rectal radiation dose during EBRT, hydrogel spacer volume should be monitored, especially if the pre-EBRT volume is small.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522162PMC
http://dx.doi.org/10.1007/s11604-024-01617-0DOI Listing

Publication Analysis

Top Keywords

spacer volume
40
hydrogel spacer
16
spacer
12
radiation therapy
12
radiation dose
12
patient factors
12
volume
11
rectal radiation
8
prostate cancer
8
volume change
8

Similar Publications

MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.

View Article and Find Full Text PDF

"Alkyl-Substituted Phenoxy" Spacer Strategy: Antiaggregated and Highly Soluble Zinc Phthalocyanines for Color Films.

ACS Omega

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.

A series of zinc phthalocyanine derivatives (ZnPcs) were designed by introducing different volumes of steric hindrance groups (chlorine atom, n-propyloxy, isopropyloxy, n-butoxy, isobutoxy, -butoxy, 2,4-di--butylphenoxy, 2,4-di--pentylphenoxy) on the peripheral and nonperipheral positions of phthalocyanine. Density functional theory (DFT) calculations presented that the substitution of sterically hindered 2,4-di--butylphenoxy or 2,4-di--pentylphenoxy on the peripheral positions effectively reduced the aggregation of ZnPcs, improving the solubility of ZnPcs, and the simultaneous substitution on the peripheral and nonperipheral positions could achieve ZnPcs with different colors. From the calculation results, six low-aggregation ZnPcs were synthesized for the first time.

View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Eastern redbuds () are the important trees in Tennessee nurseries, known for their vibrant spring blooms, and heart-shaped foliage (Kidwell-Slak and Pooler 2018). In May 2023, container-grown eastern redbuds exhibited crown and root rot symptoms. Disease incidence was 50% of 100 plants and severity was 40% for the affected root area.

View Article and Find Full Text PDF

DNA crossover flexibilities upon discrete spacers revealed by single-molecule FRET.

Soft Matter

December 2024

Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, China.

Article Synopsis
  • The study employs origami techniques to integrate different spacers in double-stranded DNA structures and assesses their flexibility through single-molecule fluorescence resonance energy transfer (smFRET).
  • Findings reveal that traditional Holliday Junctions with zero-base spacers show an inter-structural angle of 58.7 degrees, consistent with prior crystallographic data, while longer non-complementary spacers lead to a looser configuration.
  • The research emphasizes that stable DNA duplexes require at least 5 base pairs and suggests potential applications in materials that can change volume and in torque sensing using short DNA structures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!