Influence of Cu L-Histidinate Schiff Base Derivatives on Structural Features of Irradiated Rat's DNA.

Cell Biochem Biophys

Department of Molecular Physics, Yerevan State University, 1 Alex Manoogian St. 0025, Yerevan, Armenia.

Published: September 2024

A study of rats liver DNA damages under the influence of X-ray radiation at a dose of 6.5 Gy(LD60) was carried out. The radioprotective properties of newly synthesized Cu(II) L-Schiff Histidinate complexes were also studied. The survival of rats was determined over a 30-day period after exposure to X-rays without pretreatment and also after preadministration of Cu(II) L-Histidinate-Schiff base complexes. The structural defects of rat's liver DNA were detected at 3, 7, 14, and 30 days post-irradiation extracted. The results obtained revealed that irradiation with a 6.5Gy dose in the control group degraded the characteristics of rat liver DNA in comparison to healthy DNA. On all investigated experimental days, a decrease in the melting temperature (T), a widening of the melting interval (ΔT), and a decrease in hypochromicity (Δh) were observed in the DNA samples of irradiated animals compared to the norm. The rat's pretreatment by Cu(II) L-Histidinate complexes 1 or 24 hours prior to irradiation improved DNA characteristics. Electrophoretic studies of DNA were in good agreement with the melting data. Based on the study results, it can be concluded that Cu(II) L-Histidinate complexes exhibit radioprotective properties under the studied conditions and can protect DNA from damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-024-01368-9DOI Listing

Publication Analysis

Top Keywords

liver dna
12
dna
9
radioprotective properties
8
cuii l-histidinate
8
l-histidinate complexes
8
influence l-histidinate
4
l-histidinate schiff
4
schiff base
4
base derivatives
4
derivatives structural
4

Similar Publications

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.

View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Article Synopsis
  • HSV-1 infection can lead to lung injury, and a study found that lower levels of FcRn (a protein) are linked to more severe lung damage caused by the virus.
  • The study revealed that HSV-1 increases the methylation of the FcRn gene, which reduces its expression by promoting DNMT3b, a protein that inhibits transcription through a specific region of the FcRn promoter.
  • Inhibiting ferroptosis (a type of cell death) with a drug helped reduce lung injury in cases affected by HSV-1, indicating that targeting FcRn might be a promising therapeutic approach.
View Article and Find Full Text PDF

Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution.

Aging (Albany NY)

December 2024

CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.

View Article and Find Full Text PDF

Background/aim: The purpose of this study was to examine the hepatic bacterial composition and metabolome characteristics of patients with NAFLD using 16S rDNA sequencing and metabolomics. The results of the study revealed substantial differences in hepatic bacterial composition and metabolites between the NAFLD group and the control group. These differences were used to identify potential biomarkers that could be employed to diagnose NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!