We have quantified and compared the hydration capacity (i.e., capability to incorporate water molecules) of the two surface-bound hydrophilic polymer chains, dextran (dex) and poly(ethylene glycol) (PEG), in the form of poly(l-lysine)--dextran (PLL--dex) and poly(l-lysine)--poly(ethylene glycol) (PLL--PEG), respectively. The copolymers were attached to a negatively charged silica-titania surface through the electrostatic interaction between the PLL backbone and the surface in neutral aqueous media. While the molecular weights of PLL and PEG were fixed, that of dex and the grafting density of PEG or dex on the PLL were varied. The hydration capacity of the polymer chains was quantified through the combined experimental approach of optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation monitoring (QCM-D) to yield a value for areal solvation (Ψ), i.e., mass of associated solvent molecules within the polymer chains per unit substrate area. For the two series of copolymers with comparable stretched chain lengths of hydrophilic polymers, namely, PLL(20)--PEG(5) and PLL(20)--dex(10), the Ψ values gradually increased as the initial grafting density on the PLL backbone increased or as decreased. However, the rate of increase in Ψ was higher for PEG than dextran chains, which was attributed to higher stiffness of the dextran chains. More importantly, the number of water molecules per hydrophilic group was clearly higher for PEG chains. Given that the -CHCHO- units that make up the PEG chains form a cage-like structure with 2-3 water molecules, these "strongly bound" water molecules can account for the slightly more favorable behavior of PEG compared to dextran in both aqueous lubrication and antifouling behavior of the copolymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238585 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.4c01582 | DOI Listing |
Metab Brain Dis
January 2025
Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.
View Article and Find Full Text PDFJ Mol Model
January 2025
Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.
Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.
In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!