α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209280 | PMC |
http://dx.doi.org/10.3390/toxins16060248 | DOI Listing |
Cancer Lett
December 2024
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Acute myeloid leukemia (AML) has lagged in benefiting from immunotherapies, primarily due to the scarcity of actionable AML-specific antigens. Driver mutations represent promising immunogenic targets, but a comprehensive characterization of the AML neoantigen landscape and their impact on patient outcomes and the AML immune microenvironment remain unclear. Herein, we conducted matched DNA and RNA sequencing on 304 AML patients and extensively integrated data from additional ∼2,500 AML cases, identifying 49 driver genes, notably characterized by a significant proportion of insertions and deletions (indels).
View Article and Find Full Text PDFNat Protoc
December 2024
Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
J Clin Invest
December 2024
Department of Molecular Immunology, Research Institute for Microbial Diseas, Osaka University, Suita, Japan.
Mycobacterium tuberculosis causes human tuberculosis. As mycobacteria are protected by thick lipid cell wall, humans have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are known as adjuvants acting through innate immune receptors, such as C-type lectin receptors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of California, Riverside, Chemistry, 501 Big Springs Rd, 92521, Riverside, UNITED STATES OF AMERICA.
Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mn = 13.3 kDa, Đ = 2.4,
Annu Rev Biophys
December 2024
Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA; email:
In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!