Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS.

Toxins (Basel)

U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA.

Published: May 2024

Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r > 0.99). Quantitation was performed with isotope dilution using C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g ( = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3-8% and 4-9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209136PMC
http://dx.doi.org/10.3390/toxins16060238DOI Listing

Publication Analysis

Top Keywords

apple juice
20
sample preparation
12
apple
8
patulin apple
8
apple-derived products
8
robotic sample
8
preparation system
8
juice apple
8
apple cider
8
patulin
7

Similar Publications

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive.

View Article and Find Full Text PDF

The immobilisation of essential oil components (EOCs) on food-grade supports is a promising strategy for preserving liquid foods without the drawbacks of direct EOC addition such as poor solubility, high volatility, and sensory alterations. This study presents a novel method for covalently immobilising EOCs, specifically thymol and carvacrol, on SiO particles (5-15 µm) using the Mannich reaction. This approach simplifies conventional covalent immobilisation techniques by reducing the steps and reagents while maintaining antimicrobial efficacy and preventing compound migration.

View Article and Find Full Text PDF

A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.

View Article and Find Full Text PDF

Impact of Thermal, High-Pressure, and Pulsed Electric Field Treatments on the Stability and Antioxidant Activity of Phenolic-Rich Apple Pomace Extracts.

Molecules

December 2024

Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!