A major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin's pore-forming capacity remains unknown. In acute brain slice cultures and primary cultured glia, we studied acute toxin lysis (via propidium iodide staining and LDH release) and transient pore formation (by analyzing increases in the intracellular calcium). We analyzed normal peripheral tissue glucose conditions (80 mg%), normal brain glucose levels (20 mg%), and brain hypoglycemic conditions (3 mg%), in combinations either with normoxia (8% oxygen) or hypoxia (2% oxygen). At 80 mg% glucose, hypoxia enhanced cytolysis via pneumolysin. At 20 mg% glucose, hypoxia did not affect cell lysis, but impaired calcium restoration after non-lytic pore formation. Only at 3 mg% glucose, during normoxia, did pneumolysin produce stronger lysis. In hypoglycemic (3 mg% glucose) conditions, pneumolysin caused a milder calcium increase, but restoration was missing. Microglia bound more pneumolysin than astrocytes and demonstrated generally stronger calcium elevation. Thus, our work demonstrated that the toxin pore-forming capacity in cells continuously diminishes when oxygen is reduced, overlapping with a continuously reduced ability of cells to maintain homeostasis of the calcium influx once oxygen and glucose are reduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209487PMC
http://dx.doi.org/10.3390/toxins16060232DOI Listing

Publication Analysis

Top Keywords

mg% glucose
16
glucose
8
cholesterol-dependent cytolysin
8
cytolysin pneumolysin
8
pore-forming capacity
8
pore formation
8
glucose conditions
8
conditions mg%
8
glucose hypoxia
8
mg%
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!