A Review of Remediation Strategies for Diphenyl Ether Herbicide Contamination.

Toxics

Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.

Published: May 2024

In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting effect in weed control, they can also be harmful to succeeding crops, as well as to the water and soil environment. Residual herbicides can also harm a large number of non-target organisms, leading to the death of pest predators and other beneficial organisms. Therefore, it is of great significance to control and remediate the contamination caused by diphenyl ether herbicide residues for the sake of environmental, nutritional, and biological safety. This review provides an overview of the techniques used for remediating diphenyl ether herbicide contamination, including biological, physical, and chemical remediation. Among these techniques, bioremediation, particularly microbial biodegradation technology, is extensively employed. The mechanisms and influencing factors of different remediation techniques in eliminating diphenyl ether herbicide contamination are discussed, together with a prospect for future development directions. This review serves as a scientific reference for the efficient remediation of residual contamination from diphenyl ether herbicides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209214PMC
http://dx.doi.org/10.3390/toxics12060397DOI Listing

Publication Analysis

Top Keywords

diphenyl ether
28
ether herbicide
16
herbicide contamination
12
ether herbicides
12
agriculture diphenyl
8
remediation techniques
8
diphenyl
7
ether
7
contamination
5
review remediation
4

Similar Publications

In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.

View Article and Find Full Text PDF

Aclonifen is a diphenyl ether herbicide being included in the list of priority substances. Nevertheless, the data related to its sublethal effects on fish are limited. Therefore, the present study has been carried out to investigate the toxic effects of aclonifen in juvenile following 24, 48, 72 and 96 hours of application to sublethal concentrations of 12.

View Article and Find Full Text PDF

The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.

View Article and Find Full Text PDF

Sterilization is required for any biomedical device intended to be used in contact with the human body. Several studies have reported alterations in the bulk and surface properties of such devices after repeated sterilization cycles. These surface modifications may influence other clinical parameters.

View Article and Find Full Text PDF

Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety.

J Agric Food Chem

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.

The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!