Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from "activated" hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206700 | PMC |
http://dx.doi.org/10.3390/ncrna10030034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!