Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist and remain infectious for years. These environmental prions may remain in soil, be transported in surface waters, or assimilated into plants. Environmental sampling is an emerging area of TSE research and can provide more information about prion fate and transport once shed by infected animals. In this study, we have developed the first published method for the extraction and detection of prions in plant tissue using the real-time quaking-induced conversion (RT-QuIC) assay. Incubation with a zwitterionic surfactant followed by precipitation with sodium phosphotungstate concentrates the prions within samples and allows for sensitive detection of prion seeding activity. Using this protocol, we demonstrate that prions can be detected within plant tissues and on plant surfaces using the RT-QuIC assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206635 | PMC |
http://dx.doi.org/10.3390/pathogens13060452 | DOI Listing |
Biochemistry
January 2025
Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
A hallmark event in neurodegenerative diseases is represented by the misfolding, aggregation and accumulation of proteins, leading to cellular and network dysfunction preceding the development of clinical symptoms by years. Early diagnosis represents a crucial issue in the field of neuroscience as it offers the potential to utilize this therapeutic window in the future to manage disease-modifying therapy. Seed amplification assays, including Real-Time Quaking-Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA), have emerged in recent years as innovative techniques developed to detect minute amounts of amyloidogenic proteins.
View Article and Find Full Text PDFiScience
December 2024
Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.
View Article and Find Full Text PDFBrain
December 2024
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40139, Italy.
Evidence from neuropathological cohorts indicates that a CSF α-synuclein (α-syn) seed amplification assay (SAA) may provide quantitative kinetic parameters correlating with α-syn pathology burden in patients with Lewy body disease (LBD). Studies are needed to assess their longitudinal trend during the pre-symptomatic and clinical disease phases and their correlation with measures of disease progression. We aimed to assess the baseline α-syn CSF SAA kinetic parameters, their longitudinal variations and associations with clinical outcomes in a cohort of longitudinally repeatedly sampled Lewy Body disease patients, including clinically unimpaired (asymptomatic LBD) and neurologically impaired individuals.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
The mammalian prion protein can form infectious, nonnative, and protease resistant aggregates (PrP), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrP seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrP, into more PrP. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!