A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Greedy Ensemble Hyperspectral Anomaly Detection. | LitMetric

Greedy Ensemble Hyperspectral Anomaly Detection.

J Imaging

Electrical and Computer Engineering Department, The University of Memphis, Memphis, TN 38152, USA.

Published: May 2024

Hyperspectral images include information from a wide range of spectral bands deemed valuable for computer vision applications in various domains such as agriculture, surveillance, and reconnaissance. Anomaly detection in hyperspectral images has proven to be a crucial component of change and abnormality identification, enabling improved decision-making across various applications. These abnormalities/anomalies can be detected using background estimation techniques that do not require the prior knowledge of outliers. However, each hyperspectral anomaly detection (HS-AD) algorithm models the background differently. These different assumptions may fail to consider all the background constraints in various scenarios. We have developed a new approach called Greedy Ensemble Anomaly Detection (GE-AD) to address this shortcoming. It includes a greedy search algorithm to systematically determine the suitable base models from HS-AD algorithms and hyperspectral unmixing for the first stage of a stacking ensemble and employs a supervised classifier in the second stage of a stacking ensemble. It helps researchers with limited knowledge of the suitability of the HS-AD algorithms for the application scenarios to select the best methods automatically. Our evaluation shows that the proposed method achieves a higher average F1-macro score with statistical significance compared to the other individual methods used in the ensemble. This is validated on multiple datasets, including the Airport-Beach-Urban (ABU) dataset, the San Diego dataset, the Salinas dataset, the Hydice Urban dataset, and the Arizona dataset. The evaluation using the airport scenes from the ABU dataset shows that GE-AD achieves a 14.97% higher average F1-macro score than our previous method (HUE-AD), at least 17.19% higher than the individual methods used in the ensemble, and at least 28.53% higher than the other state-of-the-art ensemble anomaly detection algorithms. As using the combination of greedy algorithm and stacking ensemble to automatically select suitable base models and associated weights have not been widely explored in hyperspectral anomaly detection, we believe that our work will expand the knowledge in this research area and contribute to the wider application of this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204925PMC
http://dx.doi.org/10.3390/jimaging10060131DOI Listing

Publication Analysis

Top Keywords

anomaly detection
24
hyperspectral anomaly
12
stacking ensemble
12
greedy ensemble
8
detection hyperspectral
8
hyperspectral images
8
ensemble anomaly
8
suitable base
8
base models
8
hs-ad algorithms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!