is a phytopathogenic fungus that causes anthracnose in common beans () and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity is associated with differences in the mycelial growth and secretion of plant-cell-wall-degrading enzymes (PCWDEs). We evaluated growth, hemicellulase and cellulase activity, and PCWDE secretion in four pathotypes of in cultures with glucose, bean hypocotyls and green beans of , and water hyacinth (). The results showed differences in the mycelial growth, hemicellulolytic activity, and PCWDE secretion among the pathotypes. Glucose was not the preferred carbon source for the best mycelial growth in all pathotypes, each of which showed a unique PCWDE secretion profile, indicating different levels of carbon catabolite regulation (CCR). The pathotypes showed a high differential hemicellulolytic capacity to degrade host and water hyacinth tissues, suggesting CCR by pentoses and that there are differences in the absorption and metabolism of different monosaccharides and/or disaccharides. We propose that different levels of CCR could optimize growth in different host tissues and could allow for consortium behavior in interactions with bean crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204554 | PMC |
http://dx.doi.org/10.3390/jof10060406 | DOI Listing |
J Fungi (Basel)
January 2025
College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20-30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in .
View Article and Find Full Text PDFFood Res Int
February 2025
Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil. Electronic address:
Botrytis cinerea is the causal agent of gray mold, which is one of the most widespread and destructive fungal diseases that compromises the productivity and quality of grapes produced throughout the world. This work aimed to verify, for the first time, the impact of unencapsulated carvacrol and encapsulated in Eudragit® nanocapsules (Eud-Carv NCs) and chia mucilage (Chia-Carv NCs) on mycelial growth and spore germination of B. cinerea.
View Article and Find Full Text PDFMycobiology
December 2024
Department of Chemistry, College of Natural Sciences, Salale University, Fiche, Ethiopia.
Food insecurity and malnutrition are among the major problems in most developing nations recently. Mushroom cultivation is one of the promising strategies to overcome these challenges. The growth and productivity of mushrooms differ because of their wide range of cultivation substrates.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
In order to the antifungal activity of chitosan (CS) and to obtain a better natural bio-antimicrobial agent, CS was modified with acrylpimaric acid (APA). The grafting sites of APA on CS were controlled by adjusting the reaction time and the ratio of reactants to obtain APA grafted with CS C-NH (NCSAA) and C-OH (CSAA). Intermediates to protect C-NH (PMCSAA) and final sample derivatives (PCSAA) were prepared using phthalic anhydride.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!