Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots.

Biomimetics (Basel)

College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130119, China.

Published: June 2024

AI Article Synopsis

  • Path planning is critical in robotics, requiring efficient and safe technologies, which prompts the introduction of an improved sparrow search algorithm (ISSA) that enhances problem-solving capabilities.
  • The ISSA enhances diversity through circle chaotic mapping, replaces the original location update formula for better exploration, and incorporates strategies like Lévy flight for global optimization and adaptive T-distribution mutation for faster convergence.
  • Comparative tests with the CEC2021 function set and mobile robot path-planning demonstrate that ISSA outperforms standard algorithms in path length, running time, optimality, and stability, showcasing its effectiveness in robotic applications.

Article Abstract

Path planning is an important research direction in the field of robotics; however, with the advancement of modern science and technology, the study of efficient, stable, and safe path-planning technology has become a realistic need in the field of robotics research. This paper introduces an improved sparrow search algorithm (ISSA) with a fusion strategy to further improve the ability to solve challenging tasks. First, the sparrow population is initialized using circle chaotic mapping to enhance diversity. Second, the location update formula of the northern goshawk is used in the exploration phase to replace the sparrow search algorithm's location update formula in the security situation. This improves the discoverer model's search breadth in the solution space and optimizes the problem-solving efficiency. Third, the algorithm adopts the Lévy flight strategy to improve the global optimization ability, so that the sparrow jumps out of the local optimum in the later stage of iteration. Finally, the adaptive T-distribution mutation strategy enhances the local exploration ability in late iterations, thus improving the sparrow search algorithm's convergence speed. This was applied to the CEC2021 function set and compared with other standard intelligent optimization algorithms to test its performance. In addition, the ISSA was implemented in the path-planning problem of mobile robots. The comparative study shows that the proposed algorithm is superior to the SSA in terms of path length, running time, path optimality, and stability. The results show that the proposed method is more effective, robust, and feasible in mobile robot path planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201462PMC
http://dx.doi.org/10.3390/biomimetics9060351DOI Listing

Publication Analysis

Top Keywords

sparrow search
16
path planning
12
improved sparrow
8
search algorithm
8
mobile robots
8
field robotics
8
strategy improve
8
location update
8
update formula
8
search algorithm's
8

Similar Publications

An improved sparrow search algorithm with multi-strategy integration.

Sci Rep

January 2025

Key Laboratory for Information Science of Electromagnetic Waves and the Research Center of Smart Networks and Systems, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Addressing the shortcomings of the Sparrow Search Algorithm (SSA), such as low accuracy of convergence and tendency of falling into local optimum, a Multi-strategy Integrated Sparrow Search Algorithm (MISSA) is proposed. In this method, by improving the black-winged kite algorithm and applying it to the producer's position update formula, an improved search strategy (ISS) is firstly proposed to enhance search ability. Secondly, a new strategy inspired by the Coot algorithm, called the group follow strategy (GFS), is proposed to improve the ability to jump out of the local optimum.

View Article and Find Full Text PDF

Non-destructive prediction and pixel-level visualization of polysaccharide-based properties in ancient paper using SWNIR hyperspectral imaging and machine learning.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.

Ancient documents and artworks are invaluable cultural heritage artworks that require careful preservation. Traditional methods for assessing their physical and chemical properties-such as tearing index, tensile index, water absorption, and pH-are often destructive, risking irreversible damage. This study introduces a novel, non-destructive approach using Short-Wave Near-Infrared (SWNIR) hyperspectral imaging (HSI) combined with advanced machine learning models.

View Article and Find Full Text PDF

Accurately predicting carbon prices is crucial for effective government decision-making and maintenance the stable operation of carbon markets. However, the instability and nonlinearity of carbon prices, driven by the complex interaction between economic, environmental, and political factors, often result in inaccurate predictions. To confront this challenge, this paper proposed a carbon price prediction model that integrates dual decomposition integration and error correction.

View Article and Find Full Text PDF

This study focuses on the construction and interpretation of a mine water inrush source identification model to enhance the precision and credibility of the model. For water inrush source identification and feature analysis, a novel method combining XGBoost and SHAP is suggested. The model uses Ca, Mg, K + Na, HCO, Cl, SO, Hardness, and pH as discriminators, and the key parameters in the XGBoost model are optimized by introducing the improved sparrow search algorithm.

View Article and Find Full Text PDF

Runoff fluctuations under the influence of climate change and human activities present a significant challenge and valuable application in constructing high-accuracy runoff prediction models. This study aims to address this challenge by taking the Wanzhou station in the Three Gorges Reservoir area as a case study to optimize various prediction models. The study first selects artificial neural network (ANN) and support vector machine (SVM) as the base models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!