Fucoxanthin is the most abundant carotenoid found in marine brown algae that exhibits several healthy properties. Dietary fucoxanthin is metabolized in the intestine, plasma, and other tissues to various metabolites, including fucoxanthinol. In this regard, the contribution of fucoxanthinol to the healthy properties of its precursor, fucoxanthin, against pathogenetic events associated with neurodegenerative diseases remains unexplored. Here, we evaluated and compared the antioxidant and neuroprotective effects of the carotenoids fucoxanthin and fucoxanthinol in in vitro models of Alzheimer's (AD) and Parkinson's (PD) disease. Neuronal SH-SY5Y cells were used to evaluate the antioxidant properties of the carotenoids against ABTS radical in the membrane and cytoplasm and oxidative stress elicited by -butyl hydroperoxide using the 2',7'-dichlorodihydrofluorescein diacetate probe. We also assessed the ability of the carotenoids to increase the glutathione (GSH) and activate the Nrf2/Keap1/ARE pathway using the monochlorobimane probe and western blotting method, respectively. The neuroprotective effects of the carotenoids against the neurotoxicity generated by oligomers of Beta-Amyloid (1-42) peptide (OAβ) and 6-hydroxydopamine (6-OHDA), which are neurotoxins of AD and PD, respectively, were finally evaluated in the same neuronal cells using the thiazolyl blue tetrazolium bromide assay. Both carotenoids could reach the cytoplasm, which explains the mainly free radical scavenging activity at this level. Notably, fucoxanthinol had higher and lower antioxidant activity than fucoxanthin at extracellular and cellular levels. Although studied carotenoids exerted the ability to activate the Nrf2/Keap1/ARE pathway, leading to an increase of intracellular GSH, our results suggested that the antioxidant activity of the carotenoids could be mainly attributed to their radical scavenging activity in neuronal membrane and cytoplasm, where they accumulate. Fucoxanthinol also shared similar neuroprotective effects as fucoxanthin against the neurotoxicity generated by OAβ and 6-OHDA, suggesting a potential neuroprotective contribution to the action of fucoxanthin administered as a food supplement in in vivo experimental models. These results encourage further research to evaluate the bioavailability of fucoxanthinol and other metabolites of fucoxanthin at the brain level to elucidate the dietary neuroprotective potential of fucoxanthin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202671PMC
http://dx.doi.org/10.3390/cimb46060357DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
16
fucoxanthin
10
antioxidant neuroprotective
8
effects fucoxanthin
8
healthy properties
8
effects carotenoids
8
membrane cytoplasm
8
activate nrf2/keap1/are
8
nrf2/keap1/are pathway
8
neurotoxicity generated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!