Wound healing involves a sophisticated biological process that relies on ideal conditions to advance through various stages of repair. Modern wound dressings are designed to imitate the natural surroundings around cells and offer properties such as moisture regulation, strength, and antimicrobial defense to boost healing. A recent research project unveiled a new type of gelatin (Gel)/dextran (Dex) hydrogels, linked through Diels-Alder (D-A) reactions, loaded with silver nanoparticles (Ag-NPs) for cutting-edge wound treatment. Gel and Dex were chemically modified to form the hydrogels via the D-A reaction. The hydrogels were enriched with Ag-NPs at varying levels. Thorough analyses of the hydrogels using methods like NMR, FT-IR, and SEM were carried out to assess their structure and nanoparticle integration. Rheological tests displayed that the hydrogels had favorable mechanical attributes, particularly when Ag-NPs were included. The hydrogels demonstrated controlled swelling, responsiveness to pH changes, and were non-toxic. Testing against E. coli showcased the strong antibacterial activity of the nanocomposite hydrogels in a concentration-dependent manner. This investigation showcased the promise of these bioactive nanocomposite hydrogels in promoting speedy wound healing by maintaining a moist environment, offering an antimicrobial shield, and ensuring mechanical support at the wound site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202739PMC
http://dx.doi.org/10.3390/gels10060408DOI Listing

Publication Analysis

Top Keywords

nanocomposite hydrogels
12
wound healing
12
hydrogels
9
silver nanoparticles
8
wound
6
diels-alder cross-linked
4
cross-linked gelatin/dextran
4
gelatin/dextran nanocomposite
4
hydrogels silver
4
nanoparticles wound
4

Similar Publications

The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.

View Article and Find Full Text PDF

Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy.

Carbohydr Polym

March 2025

State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China. Electronic address:

Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe as cross-linkers.

View Article and Find Full Text PDF

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

Injectable, self-healing and phase change nanocomposite gels loaded with two nanotherapeutic agents for mild-temperature, precise and synergistic photothermal-thermodynamic tumor therapy.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China. Electronic address:

Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues.

View Article and Find Full Text PDF

A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition.

Int J Biol Macromol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:

Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!