Effective forest fire suppression remains a critical challenge, necessitating innovative solutions. Temperature-sensitive hydrogels represent a promising avenue in this endeavor. Traditional firefighting methods often struggle to address forest fires efficiently while mitigating ecological harm and optimizing resource utilization. In this study, a novel intelligent temperature-sensitive hydrogel was prepared specially for forest fire extinguishment. Utilizing a one-pot synthesis approach, this material demonstrates exceptional fluidity at ambient temperatures, facilitating convenient application and transport. Upon exposure to elevated temperatures, it undergoes a phase transition to form a solid, barrier-like structure essential for containing forest fires. The incorporation of environmentally friendly phosphorus salts into the chitosan/hydroxypropyl methylcellulose gel system enhances the formation of temperature-sensitive hydrogels, thereby enhancing their structural integrity and firefighting efficacy. Morphological and thermal stability analyses elucidate the outstanding performance, with the hydrogel forming a dense carbonized layer that acts as a robust barrier against the spread of forest fires. Additionally, comprehensive evaluations employing rheological tests, cone calorimeter tests, a swelling test, and infrared thermography reveal the multifaceted roles of temperature-sensitive hydrogels in forest fire prevention and suppression strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202437PMC
http://dx.doi.org/10.3390/gels10060390DOI Listing

Publication Analysis

Top Keywords

forest fire
16
temperature-sensitive hydrogels
12
forest fires
12
chitosan/hydroxypropyl methylcellulose
8
temperature-sensitive hydrogel
8
fire suppression
8
forest
7
temperature-sensitive
5
preparation characterization
4
characterization chitosan/hydroxypropyl
4

Similar Publications

Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.

View Article and Find Full Text PDF

Impact of Siberian Wildfires on Ice-Nucleating Particle Concentrations over the Northwestern Pacific.

Environ Sci Technol

January 2025

Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan.

Ice-nucleating particles (INPs) significantly influence aerosol-cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations and origins of INPs over the western North Pacific to the Arctic Ocean through ship-borne observations conducted in the early autumn of 2016.

View Article and Find Full Text PDF

Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.

View Article and Find Full Text PDF

With climate change causing more extreme weather events globally, climate scientists have argued that societies have three options: mitigation, adaptation or suffering. In recent years, devastating wildfires have caused significant suffering, yet the extent of this suffering has not been defined. To encapsulate this suffering, we determined impacts and effects of extreme wildfires through two systematic literature reviews.

View Article and Find Full Text PDF

Wildland Firefighters Suffer Increasing Risk of Job-Related Death.

J Burn Care Res

January 2025

Department of Burn Surgery, Medical University of South Carolina, 171 Ashley Avenue, Charleston SC 29425, USA. MD.

Wildland firefighting is a niche specialization in the fire service - inherently dangerous with unique risks. Over the past decade, fatalities amongst all firefighters have decreased; however, wildland firefighter fatalities have increased. This subject has only been described in the grey literature, and a paucity of medical literature exists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!