Unsupervised domain adaptation (UDA) aims to reapply the classifier to be ever-trained on a labeled source domain to a related unlabeled target domain. Recent progress in this line has evolved with the advance of network architectures from convolutional neural networks (CNNs) to transformers or both hybrids. However, this advance has to pay the cost of high computational overheads or complex training processes. In this paper, we propose an efficient alternative hybrid architecture by marrying transformer to contextual convolution (TransConv) to solve UDA tasks. Different from previous transformer based UDA architectures, TransConv has two special aspects: (1) reviving the multilayer perception (MLP) of transformer encoders with Gaussian channel attention fusion for robustness, and (2) mixing contextual features to highly efficient dynamic convolutions for cross-domain interaction. As a result, TransConv enables to calibrate interdomain feature semantics from the global features and the local ones. Experimental results on five benchmarks show that TransConv attains remarkable results with high efficiency as compared to the existing UDA methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202584 | PMC |
http://dx.doi.org/10.3390/e26060469 | DOI Listing |
Sci Rep
December 2024
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 47100, China.
Tea bud detection technology is of great significance in realizing automated and intelligent plucking of tea buds. This study proposes a lightweight tea bud identification model based on modified Yolov5 to increase the picking accuracy and labor efficiency of intelligent tea bud picking while lowering the deployment pressure of mobile terminals. The following methods are used to make improvements: the backbone network CSPDarknet-53 of YOLOv5 is replaced with the EfficientNetV2 feature extraction network to reduce the number of parameters and floating-point operations of the model; the neck network of YOLOv5, the Ghost module is introduced to construct the ghost convolution and C3ghost module to further reduce the number of parameters and floating-point operations of the model; replacing the upsampling module of the neck network with the CARAFE upsampling module can aggregate the contextual tea bud feature information within a larger sensory field and improve the mean average precision of the model in detecting tea buds.
View Article and Find Full Text PDFSci Rep
December 2024
College of Computer and Information Engineering, Inner Mongolia Agricultural University, Huhhot, 010000, Inner Mongolia, China.
Mongolian patterns are easily damaged by various factors in the process of inheritance and preservation, and the traditional manual restoration methods are time-consuming, laborious, and costly. With the development of deep learning technology and the rapid growth of the image restoration field, the existing image restoration methods are mostly aimed at natural scene images. They do not apply to Mongolian patterns with complex line texture structures and high saturation-rich colors.
View Article and Find Full Text PDFJ Imaging
November 2024
Research Laboratory: Networked Objects, Control and Communication Systems, NOCCS-ENISo, National Engineering School of Sousse, University of Sousse, Soussse 4023, Tunisia.
We propose a novel architecture, Transformer Dil-DenseUNet, designed to address the challenges of accurately segmenting stroke lesions in MRI images. Precise segmentation is essential for diagnosing and treating stroke patients, as it provides critical spatial insights into the affected brain regions and the extent of damage. Traditional manual segmentation is labor-intensive and error-prone, highlighting the need for automated solutions.
View Article and Find Full Text PDFDigit Health
December 2024
School of Computer Science, University of Birmingham, Birmingham, UK.
Objective: The study aims to present an active learning approach that automatically extracts clinical concepts from unstructured data and classifies them into explicit categories such as Problem, Treatment, and Test while preserving high precision and recall and demonstrating the approach through experiments using i2b2 public datasets.
Methods: Initially labeled data are acquired from a lexical-based approach in sufficient amounts to perform an active learning process. A contextual word embedding similarity approach is adopted using BERT base variant models such as ClinicalBERT, DistilBERT, and SCIBERT to automatically classify the unlabeled clinical concept into explicit categories.
Comput Biol Med
December 2024
Aerospace Hi-tech Holding Group Co., LTD, Harbin, Heilongjiang, 150060, China.
CNN-based techniques have achieved impressive outcomes in medical image segmentation but struggle to capture long-term dependencies between pixels. The Transformer, with its strong feature extraction and representation learning abilities, performs exceptionally well within the domain of medical image partitioning. However, there are still shortcomings in bridging local to global connections, resulting in occasional loss of positional information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!