To address challenges related to the inadequate representation and inaccurate discrimination of pedestrian attributes, we propose a novel method for person re-identification, which leverages global feature learning and classification optimization. Specifically, this approach integrates a Normalization-based Channel Attention Module into the fundamental ResNet50 backbone, utilizing a scaling factor to prioritize and enhance key pedestrian feature information. Furthermore, dynamic activation functions are employed to adaptively modulate the parameters of ReLU based on the input convolutional feature maps, thereby bolstering the nonlinear expression capabilities of the network model. By incorporating Arcface loss into the cross-entropy loss, the supervised model is trained to learn pedestrian features that exhibit significant inter-class variance while maintaining tight intra-class coherence. The evaluation of the enhanced model on two popular datasets, Market1501 and DukeMTMC-ReID, reveals improvements in Rank-1 accuracy by 1.28% and 1.4%, respectively, along with corresponding gains in the mean average precision (mAP) of 1.93% and 1.84%. These findings indicate that the proposed model is capable of extracting more robust pedestrian features, enhancing feature discriminability, and ultimately achieving superior recognition accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11203042 | PMC |
http://dx.doi.org/10.3390/e26060436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!