Strains across the family form the basis for a trillion-dollar industry. Our understanding of the genomic basis for their key traits is fragmented, however, including the metabolism that is foundational to their industrial uses. Pangenome analysis of publicly available genomes allowed us to generate genome-scale metabolic network reconstructions for 26 species of industrial importance. Their manual curation led to more than 75,000 gene-protein-reaction associations that were deployed to generate 2,446 genome-scale metabolic models. Cross-referencing genomes and known metabolic traits allowed for manual metabolic network curation and validation of the metabolic models. As a result, we provide the first pangenomic basis for metabolism in the family and a collection of predictive computational metabolic models that enable a variety of practical uses.IMPORTANCE, a bacterial family foundational to a trillion-dollar industry, is increasingly relevant to biosustainability initiatives. Our study, leveraging approximately 2,400 genome sequences, provides a pangenomic analysis of metabolism, creating over 2,400 curated and validated genome-scale models (GEMs). These GEMs successfully predict (i) unique, species-specific metabolic reactions; (ii) niche-enriched reactions that increase organism fitness; (iii) essential media components, offering insights into the global amino acid essentiality of ; and (iv) fermentation capabilities across the family, shedding light on the metabolic basis of -based commercial products. This quantitative understanding of metabolic properties and their genomic basis will have profound implications for the food industry and biosustainability, offering new insights and tools for strain selection and manipulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265412PMC
http://dx.doi.org/10.1128/msystems.00156-24DOI Listing

Publication Analysis

Top Keywords

metabolic models
12
metabolic
10
species-specific metabolic
8
metabolic traits
8
trillion-dollar industry
8
genomic basis
8
genome-scale metabolic
8
metabolic network
8
offering insights
8
basis
5

Similar Publications

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

To investigate macula and optic nerve head (ONH) mitochondrial metabolic activity using flavoprotein fluorescence (FPF) in normal, glaucoma suspect (GS), and open-angle glaucoma (OAG) eyes we performed a cross-sectional, observational study of FPF in normal, GS, and OAG eyes. The macula and ONH of each eye was scanned and analyzed with a commercially available FPF measuring device (OcuMet Beacon, OcuSciences Inc., Ann Arbor, MI).

View Article and Find Full Text PDF

Objective: Blood urea nitrogen (BUN) is a commonly used biomarker for assessing kidney function and neuroendocrine activity. Previous studies have indicated that elevated BUN levels are associated with increased mortality in various critically ill patient populations. The focus of this study was to investigate the relationship between BUN and 28-day mortality in intensive care patients.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Background: Overactive bladder (OAB) is a common disorder, particularly in women, and its symptoms, including urgency, frequency, and nocturia, can significantly affect quality of life. The cardiometabolic index (CMI) is a novel metabolic risk indicator that has been receiving more attention lately. This study investigated the association between CMI and OAB in adult women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!