Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aromatic polyisocyanurate (PIR) aerogels are recognized as advanced porous materials and extensively studied due to their lightweight nature, high porosity, and specific surface area, which attribute to their outstanding thermal insulation properties. The inherent thermal stability of the PIR moieties, combined with great insulating performance, renders PIR aerogels highly suitable for building insulation applications. Nevertheless, materials containing isocyanurate obtained through direct trimerization of aromatic isocyanates exhibit brittleness, resulting in inferior mechanical performance. In order to enhance the processability of the PIR aerogels, we propose a cocyclotrimerization approach involving mixtures of mono- and difunctional aromatic isocyanates. This approach is designed to develop a PIR network with decreased cross-linking density and brittleness. Herein, we developed an array of PIR aerogels from different alkyl chain-modified isocyanate mixtures. The resulting PIR aerogels exhibited high porosity (>89%), a large surface area (∼300 m/g), superinsulating performance with ultralow thermal conductivity (∼16.8 mW m K), notable thermal stability ( ∼ 250 °C), improved mechanical performance, and intrinsic hydrophobicity without the need for postmodification. These high-performance organic aerogels hold significant promise for applications requiring superinsulating materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247422 | PMC |
http://dx.doi.org/10.1021/acsami.4c07480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!