A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-Step Formation of Pickering Double Emulsion Costabilized by Hydrophobic Silica Nanoparticles and Sodium Alginate. | LitMetric

Pickering double emulsions exhibit higher stability and biocompatibility compared with surfactant-stabilized double emulsions. However, tailored synthesis of particle stabilizers with appropriate wettability is time consuming and complicated and usually limits their large-scale adoption. Using binary stabilizers may be a simple and scalable strategy for Pickering double emulsion formation. Herein, commercially available hydrophobic silica nanoparticles (SNPs) and sodium alginate (SA) as binary stabilizers are used to prepare O/W/O Pickering double emulsions in one-step emulsification. The influence of system composition on double emulsion preparation is identified by optical microscopy, confocal laser scanning microscopy, and interfacial tension and water contact angle analyses. The formation of the O/W/O Pickering double emulsion depends critically on the aqueous phase viscosity and occurrence of emulsion inversion. Both hydrophobic SNPs and SA adsorb at the droplet surface to provide a steric barrier, while SA also reduces interfacial tension and increases aqueous phase viscosity, giving double emulsion long-term stability. Their microstructure and stability are controlled by adjusting the SA concentration, water-oil volume ratio, concentration and wettability of the particle stabilizer, and oil type. As a demonstration, the middle layer of the as-prepared O/W/O Pickering double emulsions can be cross-linked in situ with calcium ions to produce calcium alginate porous microspheres. We believe that our strategy for double emulsion formation holds great potential for practical applications in food, cosmetics, or pharmaceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238577PMC
http://dx.doi.org/10.1021/acs.langmuir.4c00976DOI Listing

Publication Analysis

Top Keywords

pickering double
24
double emulsion
24
double emulsions
16
o/w/o pickering
12
double
10
hydrophobic silica
8
silica nanoparticles
8
sodium alginate
8
binary stabilizers
8
emulsion formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!