The riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin utilization. To determine their mechanism of action, we generated roseoflavin-resistant parasites by in vitro evolution. Relative to wild-type, these parasites were 4-fold resistant to roseoflavin and cross-resistant to 8-aminoriboflavin. Whole genome sequencing of the resistant parasites revealed a missense mutation leading to an amino acid change (L672H) in the gene coding for a putative flavokinase (FK), the enzyme responsible for converting riboflavin into the cofactor flavin mononucleotide (FMN). To confirm that the L672H mutation is responsible for the phenotype, we generated parasites with the missense mutation incorporated into the FK gene. The IC values for roseoflavin and 8-aminoriboflavin against the roseoflavin-resistant parasites created through in vitro evolution were indistinguishable from those against parasites in which the missense mutation was introduced into the native FK. We also generated two parasite lines episomally expressing GFP-tagged versions of either the wild-type or mutant forms of FK. We found that FK-GFP localizes to the parasite cytosol and that immunopurified FK-GFP phosphorylated riboflavin, roseoflavin, and 8-aminoriboflavin. The L672H mutation increased the for roseoflavin, explaining the resistance phenotype. Mutant FK is no longer capable of phosphorylating 8-aminoriboflavin, but its antiplasmodial activity against resistant parasites can still be antagonized by increasing the extracellular concentration of riboflavin, consistent with it also inhibiting parasite growth through competitive inhibition of FK. Our findings, therefore, are consistent with roseoflavin and 8-aminoriboflavin inhibiting parasite proliferation by inhibiting riboflavin phosphorylation and via the generation of toxic flavin cofactor analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.4c00289DOI Listing

Publication Analysis

Top Keywords

roseoflavin 8-aminoriboflavin
20
missense mutation
12
parasite proliferation
8
roseoflavin-resistant parasites
8
vitro evolution
8
resistant parasites
8
l672h mutation
8
parasites missense
8
inhibiting parasite
8
roseoflavin
7

Similar Publications

The riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin utilization. To determine their mechanism of action, we generated roseoflavin-resistant parasites by in vitro evolution. Relative to wild-type, these parasites were 4-fold resistant to roseoflavin and cross-resistant to 8-aminoriboflavin.

View Article and Find Full Text PDF

8-Demethyl-8-dimethylaminoriboflavin (Roseoflavin or RoF) is a natural riboflavin analogue found in and . RoF displays potent antibiotic properties because it affects FMN riboswitches and flavoproteins of cellular targets. ,-8-Demethyl-8-aminoriboflavin dimethyltransferase (RosA) is an enzyme that catalyzes the last step of RoF biosynthesis, a consecutive dimethylation of 8-demethyl-8-aminoriboflavin (AF) to generate RoF.

View Article and Find Full Text PDF

Roseoflavin, a Natural Riboflavin Analogue, Possesses and Antiplasmodial Activity.

Antimicrob Agents Chemother

October 2022

Research School of Biology, The Australian National Universitygrid.1001.0, Canberra, Australian Capital Territory, Australia.

The ability of the human malaria parasite Plasmodium falciparum to access and utilize vital nutrients is critical to its growth and proliferation. Molecules that interfere with these processes could potentially serve as antimalarials. We found that two riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin metabolism and/or the utilization of the riboflavin metabolites flavin mononucleotide and flavin adenine dinucleotide.

View Article and Find Full Text PDF

RosB catalyzes the formation of 8-aminoriboflavin 5'-phosphate (AFP), the key intermediate in roseoflavin biosynthesis, from the metabolic precursors riboflavin 5'-phosphate (RP, also known as FMN) and glutamate. The conversion of the aromatic methyl group at position 8 in RP into the aromatic amine in AFP occurs via two intermediates, namely, the aldehyde 8-formyl-RP and the acid 8-carboxy-RP. To gain insights into the mechanism for this chemically challenging transformation, we utilized a structure-based approach to identify active site variants of RosB that stall the reaction at various points along the reaction coordinate.

View Article and Find Full Text PDF

8-demethyl-8-aminoriboflavin-5'-phosphate (AFP) synthase (RosB) catalyzes the key reaction of roseoflavin biosynthesis by forming AFP from riboflavin-5'-phosphate (RP) and glutamate via the intermediates 8-demethyl-8-formylriboflavin-5'-phosphate (OHC-RP) and 8-demethyl-8-carboxylriboflavin-5'-phosphate (HO C-RP). To understand this reaction in which a methyl substituent of an aromatic ring is replaced by an amine we structurally characterized RosB in complex with OHC-RP (2.0 Å) and AFP (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!