A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks. | LitMetric

The critical micelle concentration (CMC) of surfactant molecules is an essential property for surfactant applications in the industry. Recently, classical quantitative structure-property relationship (QSPR) and graph neural networks (GNNs), a deep learning technique, have been successfully applied to predict the CMC of surfactants at room temperature. However, these models have not yet considered the temperature dependence of the CMC, which is highly relevant to practical applications. We herein develop a GNN model for the temperature-dependent CMC prediction of surfactants. We collected about 1400 data points from public sources for all surfactant classes, i.e., ionic, nonionic, and zwitterionic, at multiple temperatures. We test the predictive quality of the model for the following scenarios: (i) when CMC data for surfactants are present in the training of the model in at least one different temperature and (ii) CMC data for surfactants are not present in the training, i.e., generalizing to unseen surfactants. In both test scenarios, our model exhibits a high predictive performance of ≥ 0.95 on test data. We also find that the model performance varies with the surfactant class. Finally, we evaluate the model for sugar-based surfactants with complex molecular structures, as these represent a more sustainable alternative to synthetic surfactants and are therefore of great interest for future applications in the personal and home care industries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00314DOI Listing

Publication Analysis

Top Keywords

temperature dependence
8
graph neural
8
neural networks
8
cmc data
8
data surfactants
8
surfactants training
8
surfactants
7
cmc
6
model
6
surfactant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!