Introduction: Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases.

Areas Covered: The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023.

Expert Opinion: The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543776.2024.2362203DOI Listing

Publication Analysis

Top Keywords

protein tyrosine
12
tyrosine phosphatase
8
tyrosine phosphatases
8
drug discovery
8
innovative treatments
8
protein
4
inhibitors
4
phosphatase inhibitors
4
inhibitors patent
4
patent review
4

Similar Publications

[A Review of progresses in research on delayed resistance to EGFR-TKI by Traditional Chinese medicine via inhibiting cancer stem cells properties].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Shandong First Medical University Affiliated Cancer Hospital, Jinan 250117, China. *Corresponding author, E-mail:

It has been popular and challenging to undertake researches on the delay of acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). As key cells for tumor initiation, cancer stem cells (CSC) play an important role in the process of resistance to EGFR-TKI. Although preliminary studies found that traditional Chinese medicine (TCM) could inhibit CSC properties and delay EGFR-TKI resistance, the specific molecular mechanism remains unclear.

View Article and Find Full Text PDF

Objective: This study aims to examine the changes in metabolic profiles in patients with patent foramen ovale (PFO) and migraine, as well as in patients with isolated migraine, before and after surgical intervention using metabolomics.

Methods: Patients were categorized into four groups: the simple migraine (SM) group, the PFO with migraine preoperative group (PRE), the PFO with migraine postoperative Day 3 group (POST_3d), and the PFO with migraine postoperative Day 30 group (POST_30d). Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) were employed to identify differential metabolites across these groups.

View Article and Find Full Text PDF

AXL: shapers of tumor progression and immunosuppressive microenvironments.

Mol Cancer

January 2025

Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.

As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

Specific recognition mechanism of an antibody to sulfated tyrosine and its potential use in biological research.

J Biol Chem

January 2025

Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:

Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!