Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196811 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1436678 | DOI Listing |
Life Metab
April 2024
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, United States.
Front Public Health
January 2025
University of Helsinki, Helsinki, Finland.
Cancer Lett
January 2025
. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.
View Article and Find Full Text PDFAdv Nutr
January 2025
Department of Nephrology, The Scarborough Health Network, Toronto, Ontario, Canada; Kidney Life Sciences Institute, Toronto, Ontario, Canada.
Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection are transforming traditional management approaches. This review explores how multi-omics technologies and artificial intelligence (AI) are enhancing glucose management in this patient population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!