is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including . [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285713PMC
http://dx.doi.org/10.1098/rsob.240033DOI Listing

Publication Analysis

Top Keywords

iron limitation
12
bola family
8
iron sensing
8
[2fe-2s] cluster
8
cluster trafficking
8
mitochondria cytosol/nucleus
8
bol1 bol3
8
mitochondrial targeting
8
lack cytosolic/nuclear
8
cytosolic/nuclear bol3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!