AI Article Synopsis

  • The decline in wild bee populations negatively impacts plant communities due to reduced pollination.
  • Protecting areas with high bee species richness is important for maintaining pollination services, but these areas may not always support specialized bee species needed for diverse plant pollination.
  • The study mapped the distribution and functional range of bumble and honey bee species in Japan, revealing high species richness in western Hokkaido and a wide functional range in central Honshu, highlighting the need for tailored conservation strategies.

Article Abstract

The decline of wild bee populations causes the decline of bee-pollinated plant populations through the deterioration of pollination services. Since high bee species richness generally involves high functional group diversity, protecting areas of high bee species richness will help to maintain pollination services for plants. However, those areas do not always include the habitats of bee species with specialized functions that expand the range of plants being pollinated. To map important areas for protecting native bee species and their functions, we estimated the distributions and functional range of 13 bumble bee species and 1 honey bee species in Japan. The distributions were estimated from an ensemble of six species distribution models using bee occurrence data and environmental data. The functional range of bee species was estimated by combining the estimated distributions and proboscis length, which frequently corresponds to the floral shape of the plant species they pollinate. The estimated species richness was high in western Hokkaido and the estimated functional range was wide in central Honshu. Our method is useful to see whether areas important for high species richness of pollinators differ from those for rare species or their functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199664PMC
http://dx.doi.org/10.1038/s41598-024-61848-zDOI Listing

Publication Analysis

Top Keywords

bee species
32
functional range
16
species richness
16
species
13
species functions
12
bee
10
distributions functional
8
map areas
8
areas protecting
8
pollination services
8

Similar Publications

The Identification of Insect Specific iAANAT Inhibitors.

Arch Biochem Biophys

December 2024

Department of Chemistry, University of South Florida, Tampa, Florida, 33620. Electronic address:

An important aspect of food security is the development of innovative insecticides, particularly ones that specifically target insect pests and exhibit minimal toxicity to mammals. The insect arylalkylamine N-acyltransferases (iAANATs) could serve as targets for novel insecticides that satisfy these criteria. There exists a wealth of structural and biochemical information for the iAANATs and iAANAT knockdown experiments show that these enzymes are critical to insect health.

View Article and Find Full Text PDF

Chemical constituents and antibacterial activities of Cameroonian dark brown propolis against potential biofilm-forming bacteria.

Nat Prod Res

December 2024

Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium.

Propolis is a resinous material collected by different bee species from various plant exudates and used to seal holes in honeycombs, smoothen the internal walls, embalm intruders, improve health and prevent diseases. From its -hexane extract, eight compounds were isolated and characterised as: mangiferonic acid (); 1-hydroxymangiferonic acid (), new natural product; mangiferolic acid(); 27-hydroxymangiferolic acid (), reported here for the first time as propolis constituent; 27-hydroxymangiferonic acid (); -amyrin (); -amyrin () and lupeol (). The chemical structures of the isolated compounds were elucidated using spectroscopic methods, such as 1D and 2D-NMR, mass spectrometry and comparison with previous published reports.

View Article and Find Full Text PDF

Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders.

Arch Insect Biochem Physiol

December 2024

Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China.

The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction.

View Article and Find Full Text PDF

Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations.

Sci Total Environ

December 2024

Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay. Electronic address:

Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes.

View Article and Find Full Text PDF

Stingless bee honey is a natural product consisting of sugars, organic acids, proteins, minerals, vitamins, phenolic compounds, and flavonoids. Due to its healing properties, honey is often used in phytotherapy and for homemade syrups. The search for natural therapeutic alternatives has been an increasing trend in recent years, mainly due to the side effects of artificial drugs and increasing antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!