From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning.

Nat Commun

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, China.

Published: June 2024

Data scarcity is one of the critical bottlenecks to utilizing machine learning in material discovery. Transfer learning can use existing big data to assist property prediction on small data sets, but the premise is that there must be a strong correlation between large and small data sets. To extend its applicability in scenarios with different properties and materials, here we develop a hybrid framework combining adversarial transfer learning and expert knowledge, which enables the direct prediction of carrier mobility of two-dimensional (2D) materials using the knowledge learned from bulk effective mass. Specifically, adversarial training ensures that only common knowledge between bulk and 2D materials is extracted while expert knowledge is incorporated to further improve the prediction accuracy and generalizability. Successfully, 2D carrier mobilities are predicted with the accuracy over 90% from only crystal structure, and 21 2D semiconductors with carrier mobilities far exceeding silicon and suitable bandgap are successfully screened out. This work enables transfer learning in simultaneous cross-property and cross-material scenarios, providing an effective tool to predict intricate material properties with limited data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199574PMC
http://dx.doi.org/10.1038/s41467-024-49686-zDOI Listing

Publication Analysis

Top Keywords

transfer learning
16
bulk effective
8
effective mass
8
carrier mobility
8
adversarial transfer
8
small data
8
data sets
8
expert knowledge
8
carrier mobilities
8
learning
5

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!