A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superoxide dismutase-contained solid lipid nanoparticles: Formulation development and In-vivo evaluation for second-degree burn wound healing in rats. | LitMetric

Introduction: Superoxide dismutase (SOD), a natural enzyme with high antioxidant activity, reduces injury and accelerates wound healing by scavenging superoxide radicals. This enzyme plays an important role in cellular defense against oxidative stress such as burn injury. The aim of this study was to load SOD into solid lipid nanoparticles for the treatment of rat burn wounds.

Methods: Solid lipid nanoparticles were prepared by Solvent Emulsification Diffusion method and evaluated for particle size, enzyme activity and enzyme entrapment efficiency. Twenty-seven rats in 3 different groups were induced with deep second-degree burns and then treated with SOD-loaded solid lipid nanoparticles, solid lipid nanoparticles without enzyme, or SOD solution. After the treatment period, the wounds were evaluated macroscopically for the area of healing and microscopically for indices of re-epithelialization, granulation tissue and angiogenesis.

Results: The optimized SOD-loaded solid lipid nanoparticles showed a particle size of 35-85 ± 2.41 nm, 78.4 ± 4.31 % entrapment efficiency and 90 % initial enzyme activity. Macroscopic examination showed that the best recovery rate belonged to the solid lipid nanoparticle group. Pathological studies also showed that angiogenesis and granulation tissue were significantly better in this group. Compared to the other two groups, SOD-loaded solid lipid nanoparticles showed a significant improvement in pathological factors, particularly angiogenesis and granulation tissue, as well as a faster reduction in the number of inflammatory cells.

Conclusion: Based on this study, solid lipid nanoparticles could be used as an effective delivery system for SOD in the treatment of second-degree burns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.burns.2024.05.017DOI Listing

Publication Analysis

Top Keywords

solid lipid
36
lipid nanoparticles
32
sod-loaded solid
12
granulation tissue
12
solid
9
lipid
9
nanoparticles
8
wound healing
8
particle size
8
enzyme activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!