Ambulatory measurements of trunk accelerations can provide valuable insight into the amount and quality of daily life activities. Such information has been used to create models to identify individuals at high risk of falls. However, external validation of such prediction models is lacking, yet crucial for clinical implementation. We externally validated 3 previously described fall prediction models. Complete questionnaires and 1-week trunk acceleration data were obtained from 263 community-dwelling people (mean age 71.8 years, 68.1% female). To validate models, we first used the coefficients and optimal cutoffs from the original cohort, then recalibrated the original models, as well as optimized parameters based on our new cohort. Among all participants, 39.9% experienced falls during a 6-month follow-up. All models showed poor precision (0.20-0.49), poor sensitivity (0.32-0.58), and good specificity (0.45-0.89). Calibration of the original models had limited effect on model performance. Using coefficients and cutoffs optimized on the external cohort also had limited benefits. Lastly, the odds ratios in our cohort were different from those in the original cohort, which indicated that gait characteristics, except for the index of harmonicity ML (medial-lateral direction), were not statistically associated with falls. Fall risk prediction in our cohort was not as effective as in the original cohort. Recalibration as well as optimized model parameters resulted in a limited increase in accuracy. Fall prediction models are highly specific to the cohort studied. This highlights the need for large representative cohorts, preferably with an external validation cohort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jamda.2024.105107 | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mining Engineering, Guizhou University of Engineering Science, Bijie, 551700, China.
The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Science Department, Saarland University, Saarbrücken, Germany.
Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely information. Satellite imagery may sidestep some of these challenges and enhance our understanding of the IDP dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!