Atmospheric water-soluble organic carbon (WSOC) is a critical component of airborne particulates. It significantly affects the Earth's energy balance, air quality, and human health. Despite its importance, the molecular composition and sources of WSOC remain unclear, particularly in non-urban areas. In this study, we collected total suspended particulate (TSP) samples from three sites in northern China: Erenhot (remote site), Zhangbei (rural site), and Jinan (urban site). The WSOC components were analyzed using high-performance liquid chromatography coupled with high-resolution mass spectrometry. The results showed that the formula numbers of identified compounds exhibited a decreasing trend of Jinan (2647) > Zhangbei (2046) > Erenhot (1399). Among the assigned formulas, CHO compounds were the most abundant category for all three sites, accounting for 33 %-38 % of the identified compounds, followed by the CHON compounds with contributions of 27 %-30 %. In the remote site of Erenhot, CHO compounds were dominated by oxidized unsaturated organic compounds, and CHON compounds were mainly low-oxygenated aliphatic compounds, suggesting a significant influence of primary emissions. In contrast, the urban site of Jinan showed higher contributions of CHO and CHON compounds with elevated oxidation degrees, indicating the influence of more extensive secondary oxidation processes. Atmospheric WSOC in Erenhot and Zhangbei had abundant reduced sulfur-containing species, likely from coal or diesel combustion, while that in Jinan was characterized by aliphatic organosulfates and nitrooxy-organosulfates, which are mainly associated with traffic emissions and biogenetic sources, respectively. These findings reveal significant differences in the molecular composition of WSOC in different atmospheric environments and improve our understanding of the chemical properties, potential sources, and transformations of organic aerosols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!