How does virtual water influence the water stress pattern in Africa? A research perspective from the perspectives of production and trade.

Sci Total Environ

School of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China; Institute of African Studies, Nanjing University, Nanjing 210023, China. Electronic address:

Published: October 2024

Northern Africa has become the first region in the world to exhaust its water resources, with a 40 % decrease in per capita water availability south of the Sahara over the past decade. While adjusting production structures and consumption can regulate the supply-demand dynamics of water resources, the extent of the impact of virtual water-induced pressure on both the regional and national levels in Africa remains largely understudied. Applying the standard Penman formula, this research calculates the water footprint of eight cereal crops in 54 African countries from 1990 to 2021. By integrating corresponding data on cereal trade, the study analyzes changes in virtual water stress. The findings indicate a decline in the per-unit production and consumption water footprints for African cereals. However, the continuous expansion of cultivation areas contributes to a rising water stress. In comparison to 1990, the water stress for soybeans, sorghum, rice, maize, and cassava increased by 149.72 %, 146.88 %, 133.89 %, 123.30 %, and 90.8 %, respectively, in 2021. Only barley showed a reduction in water stress by 23.22 %. The study underscores the growing interconnectedness of virtual water trade (VWT) among African nations from 1990 to 2021, leading to a more balanced trade distribution. VWT has reduced water stress by 7.65 %, 2.08 %, and 1.8 % in Western, Central, and Northern Africa, respectively, while increasing pressure in Southern and Eastern Africa by 10.51 % and 1.01 %. The flow of virtual water in Africa is most influenced by spatial proximity, primarily occurring between adjacent countries or regions. Forecasts for water stress under the five scenarios of SSPs-RCP8.5 have been conducted, revealing a continuous increase in water stress across Africa. Furthermore, analysis of the SSP2-RCP8.5 scenario indicates that by 2030 and 2040, African cereal crops are projected to face virtual water resource stress increases of 7 % and 18.76 %, respectively, compared to 2020 levels. During the same period, Sierra Leone is anticipated to experience a growth rate in virtual water stress of approximately 1903.38 %. Consequently, altering crop cultivation structures and enhancing VWT are poised to alleviate water resource pressure, promoting the scientific management of agricultural water resources in Africa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174244DOI Listing

Publication Analysis

Top Keywords

water stress
36
virtual water
24
water
19
water resources
12
stress
10
northern africa
8
cereal crops
8
1990 2021
8
water resource
8
virtual
7

Similar Publications

Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.

Int J Endocrinol

January 2025

Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.

This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.

View Article and Find Full Text PDF

Drought represents one of the most devastating natural hazards, significantly impacting economies, societies, and the environment. Climate change is expected to alter future drought characteristics and may increase the severity of droughts. To mitigate these effects, it is essential to identify the characteristics of future droughts influenced by climate change using appropriate methods.

View Article and Find Full Text PDF

Introduction: The initial 24-h period following admission to a hospital holds profound significance for pediatric patients, representing a critical window where proactive interventions can substantially influence outcomes. We devised a simple triage system, pediatric simple triage score (PSTS), to see whether rapid triage of sick pediatric patients with fever can be done using the new triage system in the emergency department (ED) to predict hospital admission.

Methods: This was a prospective observational study, conducted at the department of emergency medicine of a tertiary care teaching hospital in southern India.

View Article and Find Full Text PDF

Soil salinization, extreme climate conditions, and phytopathogens are abiotic and biotic stressors that remarkably reduce agricultural productivity. Recently, nanomaterials have gained attention as effective agents for agricultural applications to mitigate such stresses. This review aims to critically appraise the available literature on interactions involving nanomaterials, plants, and microorganisms.

View Article and Find Full Text PDF

Integrated analysis of transcriptome, sRNAome, and degradome involved in the drought-response of maize Zhengdan958.

Open Life Sci

January 2025

Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China.

Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!