Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed their/immunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thecytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,immunization experiments were conducted using concentrations of 16g mlfor each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing produced-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to trigger-specific humoral and cellular immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad5b66 | DOI Listing |
Front Cell Infect Microbiol
January 2025
The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.
Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.
Nanotechnology
July 2024
Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey.
Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed their/immunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
November 2023
Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran.
Background: Brucellosis caused by B. melitensis is one of the most important common diseases between humans and livestock. Currently, live attenuated vaccines are used for this disease, which causes many problems, and unfortunately, there is no effective vaccine for human brucellosis.
View Article and Find Full Text PDFVet Med Sci
July 2023
Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
Background: Most Brucella infections take place on mucosal membranes. Therefore, creating vaccinations delivered through the mucosa may be crucial for managing brucellosis. Consequently, we assessed the efficacy of a recombinant oral antigen delivery system based on Lactococcus lactis for Brucella abortus omp25 antigen.
View Article and Find Full Text PDFPLoS One
September 2022
Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!