A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An accurate unsupervised extraction of retinal vasculature using curvelet transform and classical morphological operators. | LitMetric

An accurate unsupervised extraction of retinal vasculature using curvelet transform and classical morphological operators.

Comput Biol Med

Unité de Recherche d'Automatique et d'Informatique Appliquée (URAIA), IUT-FV de Bandjoun, Université de Dschang-Cameroun, B.P. 134, Bandjoun, Cameroon. Electronic address:

Published: August 2024

Background: Many ophthalmic disorders such as diabetic retinopathy and hypertension can be early diagnosed by analyzing changes related to the vascular structure of the retina. Accuracy and efficiency of the segmentation of retinal blood vessels are important parameters that can help the ophthalmologist to better characterize the targeted anomalies.

Method: In this work, we propose a new method for accurate unsupervised automatic segmentation of retinal blood vessels based on a simple and adequate combination of classical filters. Initially, contrast of vessels in retinal image is significantly improved by adding the Curvelet Transform to commonly used Contrast-Limited Adaptive Histogram Equalization technique. Afterwards, a morphological operator using Top Hat is applied to highlight vascular network. Then, a global threshold-based Otsu technique using minimum of intra-class variance is applied for vessel detection. Finally, a cleanup operation based on Match Filter and First Derivative Order Gaussian with fixed parameters is used to remove unwanted or isolated segments. We test the proposed method on images from two publicly available STARE and DRIVE databases.

Results: We achieve in terms of sensitivity, specificity and accuracy the respective average performances of 0.7407, 0.9878 and 0.9667 on the DRIVE database, then 0.7028, 0.9755 and 0.9507 on the STARE database.

Conclusions: Compared to some recent similar work, the obtained results are quite promising and can thus contribute to the optimization of automatic tools to aid in the diagnosis of eye disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108801DOI Listing

Publication Analysis

Top Keywords

accurate unsupervised
8
curvelet transform
8
segmentation retinal
8
retinal blood
8
blood vessels
8
unsupervised extraction
4
retinal
4
extraction retinal
4
retinal vasculature
4
vasculature curvelet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!