Without light at night, the system for photocatalytic degradation of refractory organic pollutants in aquatic environments based on free radicals will fall into a dormant state. Hence, a round-the-clock photocatalyst (CCN@SMSED) was prepared by in situ growth of cyanide-deficient g-CN on the surface of SrMgSiO:Eu,Dy through a simple calcination method. The CCN@SMSED exhibits an outstanding oxidative degradation ability for refractory tetracycline (TC) in water under both light and dark conditions, which is attributed to the synergistic effect of free radical (•O and •OH) and non-radical (h and O). Electrochemical analyses further indicate that direct electron transfer (DET) is also one of the reasons for the efficient degradation of TC. Remarkably, the continuous working time of the round-the-clock photocatalyst in a dark environment was estimated for the first time (about 2.5 h in this system). The degradation pathways of TC mainly include demethylation, ring opening, deamination and dehydration, and the growth of Staphylococcus aureus shows that the process is biosafe. More importantly, CCN@SMSED holds significant promise for practical application due to its low energy consumption and suitability for removing TC from a variety of complex water bodies. This work provides an energy consumption reference for the practical application of round-the-clock photocatalytic degradation of organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121936 | DOI Listing |
Chemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFWater Res
December 2024
School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:
This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!