AI Article Synopsis

  • This study presents a novel method for controlling protein functions using DNA and aptamers that respond to specific small molecules like ATP.
  • The researchers designed a unique aptamer-peptide conjugate that enables the assembly of split-GFP only when ATP is present, making it useful for monitoring ATP levels in live cells.
  • Additionally, the created aptamer-modulator showed excellent stability against degradation, allowing for long-term use in biological experiments.

Article Abstract

Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli. We designed a novel structure-switching aptamer-peptide conjugate as a hetero modulator for split GFP in response to ATP. By conjugating two peptides (S10/11) derived from the tripartite split-GFP to ATP aptamer, we achieved GFP reassembly using only ATP as a trigger molecule. The response to ATP at ≥4 mM concentrations indicated that it can be applied to respond to intracellular ATP in live cells. Furthermore, our hetero-modulator exhibited high and long-term stability, with a half-life of approximately four days in a serum stability assay, demonstrating resistance to nuclease degradation. We validated that our aptamer-modulator split GFP was successfully reconstituted in the cell in response to intracellular ATP levels. Our aptamer-modulated split GFP platform can be utilized to monitor a wide range of intracellular metabolites by replacing the aptamer sequence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317148PMC
http://dx.doi.org/10.1093/nar/gkae532DOI Listing

Publication Analysis

Top Keywords

intracellular atp
12
respond intracellular
8
atp levels
8
tripartite split-gfp
8
response atp
8
atp
7
intracellular
5
dna-controlled protein
4
protein fluorescence
4
fluorescence design
4

Similar Publications

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.

View Article and Find Full Text PDF

Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis.

View Article and Find Full Text PDF

Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!