A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in the consolidation by spontaneous and evoked ripples in the presence of active dendrites. | LitMetric

Ripples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other brain areas and often coincides with dendritic spikes. Yet, it is unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect plasticity and consolidation. Here, we use mathematical modeling to compare these cases. We find that consolidation as well as the emergence of spontaneous ripples depends on a reliable propagation of activity in feed-forward structures which constitute memory representations. This propagation is facilitated by excitable dendrites, which entail that a few strong synapses are sufficient to trigger neuronal firing. In this situation, stimulation-evoked ripples lead to the potentiation of weak synapses within the feed-forward structure and, thus, to a consolidation of a more general sequence memory. However, spontaneous ripples that occur without stimulation, only consolidate a sparse backbone of the existing strong feed-forward structure. Based on this, we test a recently hypothesized scenario in which the excitability of dendrites is transiently enhanced after learning, and show that such a transient increase can strengthen, restructure and consolidate even weak hippocampal memories, which would be forgotten otherwise. Hence, a transient increase in dendritic excitability would indeed provide a mechanism for stabilizing memories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230591PMC
http://dx.doi.org/10.1371/journal.pcbi.1012218DOI Listing

Publication Analysis

Top Keywords

spontaneous ripples
12
dendritic excitability
8
feed-forward structure
8
transient increase
8
ripples
7
differences consolidation
4
spontaneous
4
consolidation spontaneous
4
spontaneous evoked
4
evoked ripples
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!