Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11198854 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306094 | PLOS |
Acta Radiol
January 2025
Department of Medical Imaging, Dalin Tzu-Chi Hospital, Chiayi, Taiwan.
Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.
Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.
Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).
Clin Implant Dent Relat Res
February 2025
SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.
Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.
Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.
Bioinform Adv
November 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
School of Life Course & Population Sciences, King's College London, SE1 1UL London, UK.
Cardiovascular disease (CVD) remains a major cause of mortality in the UK, prompting the need for improved risk predictive models for primary prevention. Machine learning (ML) models utilizing electronic health records (EHRs) offer potential enhancements over traditional risk scores like QRISK3 and ASCVD. To systematically evaluate and compare the efficacy of ML models against conventional CVD risk prediction algorithms using EHR data for medium to long-term (5-10 years) CVD risk prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!