A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

General Method for Fitting Kinetics from the SECM Images of Reactive Sites on Flat Surfaces. | LitMetric

Scanning electrochemical microscopy (SECM) is a technique for imaging electrochemical reactions at a surface. The interaction between electrochemical reactions occurring at the sample and scanning electrode tip is quite complicated and requires computer modeling to obtain quantitative information from SECM images. Often, existing computer models must be modified, or a new model must be created from scratch to fit kinetic parameters for different reactive features. This work presents a method that can simulate the SECM image of a reactive feature of any shape on a flat surface which is coupled to a computer program which effectuates the automated fitting of kinetic information from these images. This fitting program is evaluated along with several methods for estimating the shapes of reactive features from their SECM images. Estimates of the reactive feature shape from SECM images were not sufficiently accurate and produced median relative errors for the surface rate constant that were >50%. Fortunately, more precise techniques for imaging the reactive features such as optical microscopy can supply sufficiently accurate shapes for the fitting procedure to produce accurate results. Fits of simulated SECM images using the actual shape from the simulation produced median relative errors for the surface rate constant that were <10% for the smallest reactive features tested. This method was applied to the SECM images of aluminum alloy AA7075 which revealed diffusion-limited kinetics for ferrocene methanol reduction over inclusions in the surface of the alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238733PMC
http://dx.doi.org/10.1021/acs.analchem.3c05793DOI Listing

Publication Analysis

Top Keywords

secm images
20
reactive features
12
electrochemical reactions
8
reactive feature
8
feature shape
8
produced median
8
median relative
8
relative errors
8
errors surface
8
surface rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!