Phosphorylation by Protein Kinase C Weakens DNA-Binding Affinity and Folding Stability of the HMGB1 Protein.

Biochemistry

Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States.

Published: July 2024

The HMGB1 protein typically serves as a DNA chaperone that assists DNA-repair enzymes and transcription factors but can translocate from the nucleus to the cytoplasm or even to extracellular space upon some cellular stimuli. One of the factors that triggers the translocation of HMGB1 is its phosphorylation near a nuclear localization sequence by protein kinase C (PKC), although the exact modification sites on HMGB1 remain ambiguous. In this study, using spectroscopic methods, we investigated the HMGB1 phosphorylation and its impact on the molecular properties of the HMGB1 protein. Our nuclear magnetic resonance (NMR) data on the full-length HMGB1 protein showed that PKC specifically phosphorylates the A-box domain, one of the DNA binding domains of HMGB1. Phosphorylation of S46 and S53 was particularly efficient. Over a longer reaction time, PKC phosphorylated some additional residues within the HMGB1 A-box domain. Our fluorescence-based binding assays showed that the phosphorylation significantly reduces the binding affinity of HMGB1 for DNA. Based on the crystal structures of HMGB1-DNA complexes, this effect can be ascribed to electrostatic repulsion between the negatively charged phosphate groups at the S46 side chain and DNA backbone. Our data also showed that the phosphorylation destabilizes the folding of the A-box domain. Thus, phosphorylation by PKC weakens the DNA-binding affinity and folding stability of HMGB1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282465PMC
http://dx.doi.org/10.1021/acs.biochem.4c00194DOI Listing

Publication Analysis

Top Keywords

hmgb1 protein
16
hmgb1 phosphorylation
12
a-box domain
12
hmgb1
11
protein kinase
8
weakens dna-binding
8
dna-binding affinity
8
affinity folding
8
folding stability
8
stability hmgb1
8

Similar Publications

Alarmins and their pivotal role in the pathogenesis of spontaneous abortion: insights for therapeutic intervention.

Eur J Med Res

December 2024

Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.

Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.

View Article and Find Full Text PDF

Background/aim: Preclinical studies were undertaken to investigate whether eribulin's known cytotoxic antimitotic effects are characterized by immunogenic cell death (ICD) as assessed by three established ICD biomarkers: extracellular released ATP, released HMGB1 and cell surface calreticulin.

Materials And Methods: Using BT-549, Hs578T and MCF-7 breast cancer cell lines, antiproliferative IC's of eribulin, five other microtubule targeting agents (MTAs; ER-076349, vinblastine, vinorelbine, paclitaxel, docetaxel) and three DNA damaging agents (DDAs; doxorubicin, cisplatin, oxaliplatin) were determined.

Results: Treatment of cells with 10×IC concentrations of all drugs in serum-free media resulted in time-dependent induction of cytotoxicity over DMSO controls.

View Article and Find Full Text PDF

Soluble CD52 mediates immune suppression by human seminal fluid.

Front Immunol

December 2024

School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia.

Seminal fluid provides for the carriage and nutrition of sperm, but also modulates immunity to prevent allo-rejection of sperm by the female. Immune suppression by seminal fluid has been associated with extracellular vesicles, originally termed prostasomes, which contain CD52, a glycosylated glycophosphoinositol-anchored peptide released from testicular epithelial cells. Previously, we reported that human T cell-derived CD52, bound to the danger-associated molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor.

View Article and Find Full Text PDF

Evaluation of HMGB1 Expression as a Clinical Biomarker for Cholangiocarcinoma.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an epithelial malignancy that is most prevalent in Southeast Asia, particularly in the northeast of Thailand. Identifying and establishing specific biomarkers of CCA is crucial for ensuring accurate prognosis and enabling effective treatment. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that can be released by dead or injured cells and is associated with tumor progression.

View Article and Find Full Text PDF

Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!