The syntheses, structures, luminescence and magnetic properties of a new series of Ln(III) complexes of the formula [Ln(L)(HO)(DMF)][Ln(L)] (in which HL is ,'-ethylaminebis[1-phenyl-3-methyl-4-formylimino-2-pyrazoline-5-one]; Ln(III) - Gd (1), Tb (2), or Dy (3) ions). The crystal structures were determined by single-crystal X-ray diffraction measurements for all the above-mentioned complexes. The crystals of these compounds consist of cationic [Ln(L)(HO)(DMF)] and anionic [Ln(L)] moieties which form a 3D supramolecular architecture by the H-bonds and electrostatic forces. Luminescence emission in the visible range was observed for Tb(III) and Dy(III) compounds upon ligand sensitization, with moderate quantum yields of 3.2% for the Dy complex and 24.2% for the Tb analogue. Moreover the Tb(III) complex demonstrates triboluminescence activity. The dynamic magnetization studies revealed that 1 and 2 demonstrate field-induced magnetic relaxation with effective energy barriers, Δ| = 24 K (for 1) and 85 K (for 2), while the Dy complex 3 exhibits slow relaxation of magnetization in zero field with an activation energy of 256 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt01284dDOI Listing

Publication Analysis

Top Keywords

luminescence magnetic
8
magnetic properties
8
lanthanideiii smms
4
smms cationic
4
cationic anionic
4
complex
4
anionic complex
4
complex fragments
4
fragments formed
4
formed schiff
4

Similar Publications

Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals.

J Phys Chem Lett

December 2024

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.

View Article and Find Full Text PDF

Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").

View Article and Find Full Text PDF

The combination of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (TFPB) and pyrazine (pyz) with Tb ions forms two distinct types of complexes, represented by the formulas [Tb(TFPB)(L)], where L is either HO or pyz, and [(Tb(TFPB))pyz]. A detailed examination of the impact of the surrounding environment on the photophysical properties of these synthesized complexes was conducted. Photoluminescence (PL) analysis indicated that the magnetic dipole transition (D → F) is dominant in Tb(iii)-based systems.

View Article and Find Full Text PDF

Analysis of the Effects of Neutron Radiation on Cellulose Linen Fabrics Using Non-Destructive Testing.

Polymers (Basel)

December 2024

Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universdad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain.

This work describes the effects of using neutron irradiation on cellulose and non-destructive methods to analyze linen fabrics of high heritage value. For this purpose, 8 samples were irradiated with increasing doses of neutrons and gamma rays up to 166 kGy of total dose. The samples were characterized by techniques such as ultraviolet luminescence, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and the nuclear magnetic resonance (NMR) technique.

View Article and Find Full Text PDF

Previous research has demonstrated that a combined magnetic field (CMF) plays a critical role in modifying the properties of aqueous solutions, leading to an increase in the luminol-enhanced chemiluminescence of neutrophils. Using this model, the distant interaction between aqueous solutions was demonstrated, and the role of a CMF in the regulation of this phenomenon was established. In the current study, highly diluted (HD) phorbol myristate acetate (PMA) solution (the donor) was incubated with aqueous ethanol (the acceptor), both in a CMF-generating device and under geomagnetic field (GMF), for 0, 20, and 60 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!