Complete exhaustion of dissolved nutrients in a large lowland river.

Environ Monit Assess

Department of Aquatic Nutrient Cycles, Institute of Carbon Cycles, Helmholtz Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany.

Published: June 2024

Riverine phytoplankton takes up phosphate, dissolved silicate, and nitrate. We investigated which nutrients are depleted during a Lagrangian sampling in the free-flowing part of the River Elbe in 2023. As part of this study, we tested the hypotheses that nutrient depletion might be caused by (1) above-average phytoplankton biomass or by (2) decreased nutrient load of the river during previous years. Phytoplankton biomass increased up to 350 km in rivers and stopped increasing exactly when soluble reactive phosphorus had been completely consumed, and molar carbon to phosphorus ratios of seston indicated the beginning phosphorus limitation. The concentrations of dissolved silicate and nitrate dropped below the detection limit as well. In contrast to the results from eight previous longitudinal samplings taken in 2018-2022, nitrate exhaustion was detected for the first time in 2023 within the transect. This was caused neither by an above-average phytoplankton biomass nor by a declined overall nutrient load of the river in 2018-2023. Instead, denitrification appears to be the most plausible explanation for the downstream decrease of nitrate and the loss of total nitrogen which was supported by enrichment of nitrate stable isotopes and a decreasing ratio of nitrate N/O.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199228PMC
http://dx.doi.org/10.1007/s10661-024-12834-5DOI Listing

Publication Analysis

Top Keywords

phytoplankton biomass
12
dissolved silicate
8
silicate nitrate
8
caused above-average
8
above-average phytoplankton
8
nutrient load
8
load river
8
nitrate
6
complete exhaustion
4
exhaustion dissolved
4

Similar Publications

Unlabelled: Biological diversity is declining across the tree of life, including among prokaryotes. With the increasing awareness of host-associated microbes as potential regulators of eukaryotic host physiology, behavior, and ecology, it is important to understand the implications of declining diversity within host microbiomes on host fitness, ecology, and ecosystem function. We used phytoplankton and their associated environmental microbiomes as model systems to test the independent and interactive effects of declining microbiome diversity with and without other stressors often caused by human activity-elevated temperature and altered nutrient availability.

View Article and Find Full Text PDF

Microbial competition for iron determines its availability to the ferrous wheel.

ISME J

January 2025

Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.

Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.

View Article and Find Full Text PDF

Over the last few decades, climate change in Svalbard (European Arctic) has led to the emergence and growth of periglacial coastal lagoons in the place of retreating glaciers. In these emerging water bodies, new ecosystems are formed, consisting of elements presumably entering the lagoon from the melting glacier, the surrounding tundra water bodies and the coastal ocean. The data presented here were collected from an emerging lagoon in the western region of Spitsbergen, Svalbard, situated between the retreating Eidembreen Glacier and Eidembukta Bay in 2022-2023.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

Ecosystem-scale primary production may be proximately limited by nitrogen (N) but ultimately limited by phosphorus (P) because N fixation contributes new N that accumulates relative to P at ecosystem scales. However, the duration needed to transition between proximate N limitation and ultimate P limitation remains unknown for most ecosystems, including lakes. Here we present the results of a fully replicated, multi-annual lake mesocosm experiment that permitted full air-water-sediment interactions that mimicked lake ecosystem ecology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!