Background And Aims: Spatial variation in plant-pollinator interactions is a key driver of floral trait diversification. A so far overlooked qualitative aspect of this variation is the behavioural component on flowers that relates to the pollinator fit. We tested the hypothesis that variation in pollinator behaviour influences the geographical pattern of phenotypic selection across the distribution range of the oil-producing Krameria grandiflora (Krameriaceae). This variation mainly involves the presence or absence of flag petal grasping, which is only performed by representatives of Centris (Centridini, Apidae), an oil-collecting bee group highly associated with Krameriaceae pollination.
Methods: We quantified variation in floral traits and fitness and estimated pollinator-mediated selection in five populations at a large geographical scale comprising the entire species range. In each population, we sampled individual pollen arrival and germination as a fitness measure, indicating pollination success and pollination performance, which was then relativized and regressed on standardized flower-pollinator fit (flag-stigma distance), advertisement (sepal length) and reward (oil volume) traits. This generated mean-scaled selection gradients used to calculate geographical selection dispersion.
Key Results: Unexpectedly, stronger selection was detected on the flower-pollinator fit trait in populations highly associated with the absence of flag petal grasping. Geographical variation in selection was mainly attributed to differential selection on the flag-stigma distance generating a selection mosaic. This may involve influences of a spatial variation in pollinator behaviour as well as composition and morphology.
Conclusions: Our results show the adaptive significance of the specialized flag petals of Krameria in the absence of the grasping behaviour and highlight the contribution of geographical variation in pollinator behaviour on flowers in driving selection mosaics, with implications for floral evolution, adaptation to pollinator fit and phenotypic diversity in specialized systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523623 | PMC |
http://dx.doi.org/10.1093/aob/mcae102 | DOI Listing |
Ann Bot
October 2024
Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
Background And Aims: Spatial variation in plant-pollinator interactions is a key driver of floral trait diversification. A so far overlooked qualitative aspect of this variation is the behavioural component on flowers that relates to the pollinator fit. We tested the hypothesis that variation in pollinator behaviour influences the geographical pattern of phenotypic selection across the distribution range of the oil-producing Krameria grandiflora (Krameriaceae).
View Article and Find Full Text PDFAm J Bot
June 2023
Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
Am J Bot
November 2022
School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
Premise: Flower phenotypes evolve to attract pollinators and to ensure efficient pollen transfer to and from the bodies of pollinators or, in self-compatible bisexual flowers, between anthers and stigmas. If functionally interacting traits are genetically correlated, response to selection may be subject to genetic constraints. Genetic constraints can be assessed by quantifying standing genetic variation in (multivariate) phenotypic traits and by asking how much the available variation is reduced under specific assumptions about phenotypic selection on functionally interacting and genetically correlated traits.
View Article and Find Full Text PDFNew Phytol
July 2020
Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121-4499, USA.
Plants sometimes suffer mechanical injury. The nonlethal collapse of a flowering stalk, for example, can greatly reduce plant fitness if it leads to 'incorrect' floral orientation and thus reduced visitation or poor pollination. When floral orientation is important for accurate pollination, as has been suggested for bilaterally symmetrical flowers, we predict that such flowers should have developmental and/or behavioural mechanisms for restoring 'correct' orientation after accidents.
View Article and Find Full Text PDFJ Evol Biol
March 2016
Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, PE, Brazil.
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower-pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird-pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!