Au-Pt Coating Improved Catalytic Stability of Au@AuPt Nanoparticles for Pressure-Based Point-of-Care Detection of O157:H7.

ACS Appl Mater Interfaces

State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Published: July 2024

Point-of-care testing (POCT) technologies facilitate onsite detection of pathogens in minutes to hours. Among various POCT approaches, pressure-based sensors that utilize gas-generating reactions, particularly those catalyzed by nanozymes (e.g., platinum nanoparticles, PtNPs, or platinum-coated gold nanoparticles, and Au@PtNPs) have been shown to provide rapid and sensitive detection capabilities. The current study introduces Au-Pt alloy-coated gold nanoparticles (Au@AuPtNPs), an innovative nanozyme with enhanced catalytic activity and relatively high stability. For pathogen detection, Au@AuPtNPs are modified with H1 or H2 hairpin DNAs that can be triggered to undergo a hybridization chain reaction (HCR) that leads to their aggregation upon recognition by an initiator strand (Ini) with H1-/H2-complementary aptamers tethered to magnetic beads (MBs). Pathogen binding to the aptamer exposes Ini, which then binds Au@AuPtNPs and initiates a HCR, resulting in Au@AuPtNP aggregation on MBs. These Au@AuPtNP aggregates exhibit strong catalysis of O from the HO substrate, which is measured by a pressure meter, enabling detection of O157:H7 at concentrations as low as 3 CFU/mL with high specificity. Additionally, O157:H7 could also be detected in simulated water and tea samples. This method eliminates the need for costly, labor- and training-intensive instruments, supporting its further testing and validation for deployment as a rapid-response POCT application in the detection of bacterial contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05351DOI Listing

Publication Analysis

Top Keywords

detection o157h7
8
gold nanoparticles
8
detection
6
au-pt coating
4
coating improved
4
improved catalytic
4
catalytic stability
4
stability au@aupt
4
nanoparticles
4
au@aupt nanoparticles
4

Similar Publications

Detection of O157H7 and in Bovine Carcasses in Two Slaughterhouses in Bio-Bío District, Chile.

Foodborne Pathog Dis

July 2024

Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile.

Article Synopsis
  • * Out of 544 samples analyzed from 272 bovine carcasses, 11 tested positive for O157:H7 (4.0%), and 6 of those had specific pathogenicity genes detected.
  • * Additionally, 22 carcasses (8.0%) tested positive for the unspecified pathogen, but none contained the specific genes associated with pathogenicity.
View Article and Find Full Text PDF

[Evaluation of effect based on different typing methods in ].

Zhonghua Liu Xing Bing Xue Za Zhi

August 2022

Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.

To evaluate the typing and clinical application effect based on clustered regularly interspaced short palindromic repeats (CRISPRs), serotype, and Multilocus Sequence Typing (MLST). The spacers, serotype and sequence type (ST) were obtained with CRISPRsFinder, SeroTypeFinder and MLST. PCR was used to amplify the CRISPRs, and the spacers were used to predict serotype and ST, then comparing with the serotype and ST.

View Article and Find Full Text PDF

Little studies on chia sprouts were not deeply address the polyphenols profiles and their functional properties during long period of germination. This study aims to evaluate the impact of germination process on the phenolic profile, antioxidant and antibacterial properties and relevant enzymes activities of Egyptian chia seeds. The total phenolic and flavonoid contents of chia sprouts increased several times during ten days of germination and maximized on 7-day sprouts (6.

View Article and Find Full Text PDF

Analysis of drug sensitivity of Escherichia Coli O157H7.

Biomed Microdevices

May 2021

College of information science and engineering, Shanxi Agricultural University, Jinzhong, 030800, People's Republic of China.

Sensitive and rapid tests of Escherichia coli drug sensitivity is very important for health of human and animals. An E. coli immunosensor was built based on electrochemical detection and immune detection technologies, through pretreating screen-printed electrodes, and analyzing the optimal reaction concentration of antigen antibody binding with the AC impedance method.

View Article and Find Full Text PDF

Microbial safety of cheese in Canada.

Int J Food Microbiol

May 2020

Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, Canada.

A profile of the microbial safety of cheese in Canada was established based on the analysis of 2955 pasteurized and raw-milk cheeses tested under Canada's National Microbiological Monitoring Program (NMMP) and 2009 raw-milk cheeses tested under the Targeted Survey Program. 97.8% of NMMP and 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!