Droplet evaporation and dissolution phenomena are pervasive in both natural and artificial systems, playing crucial roles in various applications. Understanding the intricate processes involved in the evaporation and dissolution of sessile droplets is of paramount importance for applications such as inkjet printing, surface coating, and nanoparticle deposition, . In this study, we present a demonstration of electrochemical investigation of the dissolution behaviour in sub-nL droplets down to sub-pL volume. Droplets on an electrode have been studied for decades in the field of electrochemistry to understand the phase transfer of ions at the oil-water interface, accelerated reaction rates in microdroplets, . However, the impact of microdroplet dissolution on the redox activity of confined molecules within the droplet has not been explored previously. As a proof-of-principle, we examine the dissolution kinetics of 1,2-dichloroethane droplets (DCE) spiked with 155 μM decamethylferrocene within an aqueous phase on an ultramicroelectrode ( = 6.3 μm). The aqueous phase serves as an infinite sink, enabling the dissolution of DCE droplets while also facilitating convenient electrical contact with the reference/counter electrode (Ag/AgCl 1 M KCl). Through comprehensive voltammetric analysis, we unravel the impact of droplet dissolution on electrochemical response as the droplet reaches minuscule volumes. We validate our experimental findings by finite element modelling, which shows deviations from the experimental results as the droplet accesses negligible volumes, suggesting the presence of complex dissolution modes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262062 | PMC |
http://dx.doi.org/10.1039/d4an00299g | DOI Listing |
World J Gastrointest Endosc
January 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Lukang Christian Hospital, Changhua 505002, Taiwan.
Background: Gastric bezoars are indigestible masses that can lead to gastrointestinal obstruction and ulceration. Standard treatments include endoscopic mechanical lithotripsy with a polypectomy snare and Coca-Cola dissolution therapy or a combination of both approaches. However, giant bezoars frequently require multiple treatment sessions and extended hospital stays.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.
Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
The eyes are easily stimulated by external factors, which can cause inflammation. Anti-inflammatory drugs are usually used to inhibit the production of inflammatory factors. Many nonsteroidal anti-inflammatory drugs have been used for the eye, but due to the poor solubility of meloxicam, there are currently no marketed meloxicam preparations for the treatment of eye diseases.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.
View Article and Find Full Text PDFPharm Res
January 2025
Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!